Что входит в экологическую нишу. Что такое экологическая ниша: пример. Описание экологической ниши организма: примеры. Характеристика экологической ниши видов

Положение вида, которое он занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды называют экологической нишей вида.

Концепция экологической ниши оказалась очень плодотворной для понимания законов совместной жизни видов. Над ее развитием работали многие экологи: Дж. Гриннелл, Ч. Элтон, Г. Хатчинсон, Ю. Одум и др.

Понятие «экологическая ниша» следует отличать от понятия «местообитание». В последнем случае подразумевается та часть пространства, которая заселена видом и которая обладает необходимыми абиотическими условиями для его существования. Экологическая ниша вида зависит не только от абиотических условий среды, но и в не меньшей мере от его биоценотического окружения. Характер занимаемой экологической ниши определяется как экологическими возможностями вида, так и тем, насколько эти возможности могут быть реализованы в конкретных биоценозах. Это характеристика того образа жизни, который вид может вести в данном сообществе.

Г. Хатчинсон выдвинул понятия фундаментальной и реализованной экологической ниши. Под фундаментальной понимается весь набор условий, при которых вид может успешно существовать и размножаться. В природных биоценозах, однако, виды осваивают далеко не все пригодные для них ресурсы вследствие, прежде всего, конкурентных отношений.Реализованная экологическая ниша – это положение вида в конкретном сообществе, где его ограничивают сложные биоценотические отношения. Иными словами, фундаментальная экологическая ниша характеризует потенциальные возможности вида, а реализованная – ту их часть, которая может осуществиться в данных условиях, при данной доступности ресурса. Таким образом, реализованная ниша всегда меньше, чем фундаментальная.

В экологии широко обсуждается вопрос о том, сколько экологических ниш может вместить биоценоз и сколько видов какой-либо конкретной группы, имеющих близкие требования к среде, могут ужиться вместе.

Специализация вида по питанию, использованию пространства, времени активности и другим условиям характеризуется как сужение его экологической ниши, обратные процессы – как ее расширение. На расширение или сужение экологической ниши вида в сообществе большое влияние оказывают конкуренты. Правило конкурентного исключения, сформулированное Г. Ф. Гаузе для близких по экологии видов, может быть выражено таким образом, что два вида не уживаются в одной экологической нише.

Эксперименты и наблюдения в природе показывают, что во всех случаях, когда виды не могут избежать конкуренции за основные ресурсы, более слабые конкуренты постепенно вытесняются из сообщества. Однако в биоценозах возникает много возможностей хотя бы частичного разграничения экологических ниш близких по экологии видов.

Выход из конкуренции достигается благодаря расхождению требований к среде, изменению образа жизни, что, другими словами, является разграничением экологических ниш видов. В этом случае они приобретают способность сосуществовать в одном биоценозе. Каждый из живущих вместе видов в отсутствие конкурента способен на более полное использование ресурсов. Это явление легко наблюдать в природе. Так, травянистые растения ельника способны довольствоваться небольшим количеством почвенного азота, которое остается от перехвата его корнями деревьев. Однако если на ограниченной площадке обрубить корни этих елей, условия азотного питания трав улучшаются и они бурно идут в рост, принимая густо-зеленую окраску. Улучшение условий жизни и увеличение численности какого-либо вида в результате удаления из биоценоза другого, близкого по экологическим требованиям, называется конкурентным высвобождением.

Разделение совместно живущими видами экологических ниш с частичным их перекрыванием – один из механизмов устойчивости природных биоценозов. Если какой-либо из видов резко снижает свою численность или выпадает из состава сообщества, его роль берут на себя другие. Чем больше видов в составе биоценоза, тем ниже численность каждого из них, тем сильнее выражена их экологическая специализация. В этом случае говорят о «более плотной упаковке экологических ниш в биоценозе».

У близкородственных видов, живущих вместе, обычно наблюдаются очень тонкие разграничения экологических ниш. Так, пасущиеся в африканских саваннах копытные по-разному используют пастбищный корм: зебры обрывают в основном верхушки трав, антилопы гну кормятся тем, что оставляют им зебры, выбирая при этом определенные виды растений, газели выщипывают самые низкие травы, а антилопы топи довольствуются высокими сухими стеблями, оставшимися после других травоядных. Такое же «разделение труда» в южноевропейских степях осуществляли когда-то дикие лошади, сурки и суслики (рис. 92).

Рис. 92. Разные виды травоядных поедают траву на разной высоте в африканских саваннах (верхние ряды) и в степях Евразии (нижние ряды) (по Ф. Р. Фуэнте, 1972; Б. Д. Абатурову, Г. В. Кузнецову, 1973)

В наших зимних лесах насекомоядные птицы, кормящиеся на деревьях, также избегают конкуренции друг с другом за счет разного характера поиска. Например, поползни и пищухи собирают пищу на стволах. При этом поползни стремительно обследуют дерево, быстро схватывая попадающихся на глаза насекомых или семена, оказавшиеся в крупных трещинах коры, тогда как мелкие пищухи тщательно обшаривают на поверхности ствола малейшие щелки, в которые проникает их тонкий шиловидный клюв. Зимой в смешанных стайках большие синицы ведут широкий поиск на деревьях, в кустах, на пнях, а часто и на снегу; синицы-гаички обследуют преимущественно крупные ветви; длиннохвостые синицы ищут корм на концах ветвей; мелкие корольки тщательно обшаривают верхние части крон хвойных.

Муравьи существуют в природных условиях многовидовыми ассоциациями, члены которых различаются по образу жизни. В лесах Подмосковья чаще всего обнаруживается такая ассоциация видов: доминантный вид (Formica rufa, F. aquilonia или Lasius fuliginosus) занимает несколько ярусов, в почве активен L. flavus, в подстилке леса – Myrmica rubra, напочвенный ярус осваивают L. niger и F. fusca, деревья – Camponotus herculeanus. Специализация к жизни в разных ярусах отражается в жизненной форме видов. Кроме разделения в пространстве, муравьи отличаются и по характеру добывания пищи, по времени суточной активности.

В пустынях наиболее развит комплекс муравьев, собирающих пищу на поверхности почвы (герпетобионтов). Среди них выделяются представители трех трофических групп: 1) дневные зоонекрофаги – активны в самое жаркое время, питаются трупами насекомых и активными днем мелкими живыми насекомыми; 2) ночные зоофаги – охотятся на малоподвижных насекомых с мягкими покровами, которые появляются на поверхности только ночью, и на линяющих членистоногих; 3) карпофаги (дневные и ночные) – поедают семена растений.

Совместно могут обитать по нескольку видов из одной трофической группы. Механизмы выхода из конкуренции и разграничения экологических ниш при этом следующие.

1. Размерная дифференциация (рис. 93). Например, средние веса рабочих особей трех наиболее обычных в песках Кызылкумов дневных зоонекрофагов относятся как 1:8:120. Примерно такое же соотношение весов у некрупной кошки, рыси и тигра.

Рис. 93. Сравнительные размеры четырех видов муравьев из группы дневных зоонекрофагов в песчаной пустыне Центральных Каракумов и распределение добычи трех видов по весовым классам (по Г. М. Длусскому, 1981): 1 – средний и крупный рабочие Cataglyphis setipes; 2 – С. pallida; 3 – Acantholepis semenovi; 4 – Plagiolepis pallescens

2. Поведенческие различия заключаются в разной стратегии фуражировки. Муравьи, которые создают дороги и используют мобилизацию носильщиков для переноса в гнездо обнаруженной пищи, питаются преимущественно семенами растений, образующих куртины. Муравьи, фуражиры которых работают как одиночные сборщики, собирают в основном семена растений, распределенных дисперсно.

3. Пространственная дифференциация. В пределах одного яруса сбор пищи разными видами может быть приурочен к разным участкам, например на открытых местах или под кустиками полыни, на песчаных или глинистых площадках и т. д.

4. Различия во времени активности относятся преимущественно ко времени суток, но у некоторых видов отмечены несовпадения активности и по сезонам года (преимущественно весенняя или осенняя активность).

Экологические ниши видов изменчивы в пространстве и во времени. Они могут быть резко разграничены в индивидуальном развитии в зависимости от стадии онтогенеза, как, например, у гусениц и имаго чешуекрылых, личинок и жуков майского хруща, головастиков и взрослых лягушек. В этом случае меняется и среда обитания, и все биоценотическое окружение. У других видов экологические ниши, занимаемые молодыми и взрослыми формами, более близки, но тем не менее между ними всегда имеются различия. Так, взрослые окуни и их мальки, живущие в одном и том же озере, используют для своего существования разные энергетические источники и входят в разные цепи питания. Мальки живут за счет мелкого планктона, взрослые – типичные хищники.

Ослабление межвидовой конкуренции приводит к расширению экологической ниши вида. На океанических островах с бедной фауной ряд птиц по сравнению с их сородичами на материке заселяет более разнообразные местообитания и расширяет спектр кормов, так как не сталкивается при этом с конкурирующими видами. У островных обитателей отмечается даже повышенная изменчивость формы клюва как показатель расширения характера кормовых связей.

Если межвидовая конкуренция сужает экологическую нишу вида, не давая проявиться всем его потенциям, то внутривидовая конкуренция, наоборот, способствует расширению экологических ниш. При возросшей численности вида начинается использование дополнительных кормов, освоение новых местообитаний, появление новых биоценотических связей.

В водоемах растения, полностью погруженные в воду (элодея, роголистник, уруть), оказываются в иных условиях температуры, освещенности, газового режима, чем плавающие на поверхности (телорез, водокрас, ряска) или укореняющиеся на дне и выносящие листья на поверхность (кувшинка, кубышка, виктория). Различаются они и взаимосвязями со средой. Эпифиты тропических лесов занимают сходные, но все же не идентичные ниши, так как относятся к разным экологическим группам по отношению к свету и воде (гелиофиты и сциофиты, гигрофиты, мезофиты и ксерофиты). Разные эпифитные орхидеи имеют узкоспециализированных опылителей.

В зрелом широколиственном лесу деревья первого яруса – дуб обыкновенный, вяз гладкий, клен платановидный, липа сердцелистная, ясень обыкновенный имеют сходные жизненные формы. Древесный полог, образованный их кронами, оказывается в одном горизонте, в сходных условиях среды. Но внимательный анализ показывает, что они по-разному участвуют в жизни сообщества и, следовательно, занимают разные экологические ниши. Эти деревья различаются по степени светолюбия и теневыносливости, срокам цветения и плодоношения, способам опыления и распространения плодов, составу консортов и проч. Дуб, вяз и ясень – анемофильные растения, но насыщение среды их пыльцой происходит в разные сроки. Клен и липа – энтомофилы, хорошие медоносы, но цветут в разное время. У дуба – зоохория, у остальных широколиственных деревьев – анемохория. Состав консортов у всех разный.

Если в широколиственном лесу кроны деревьев находятся в одном горизонте, то активные корневые окончания располагаются на разной глубине. Корни дуба проникают наиболее глубоко, выше располагаются корни клена и еще более поверхностно – ясеня. Опад разных видов деревьев утилизируется с разной скоростью. Листья липы, клена, вяза, ясеня к весне почти полностью разлагаются, а листья дуба и весной еще образуют рыхлую лесную подстилку.

В соответствии с представлениями Л. Г. Раменского об экологической индивидуальности видов и с учетом того, что виды растений в сообществе по-разному участвуют в освоении и преобразовании среды и трансформации энергии, можно считать, что в сложившихся фитоценозах каждый вид растения имеет свою экологическую нишу.

В онтогенезе растения, как и многие животные, меняют экологическую нишу. С возрастом они более интенсивно используют и преобразуют среду. Переход растения в генеративный период заметно расширяет круг консортов, меняет размер и напряженность фитогенного поля. Средообразующая роль стареющих, сенильных растений убывает. Они теряют многих консортов, но увеличивается роль связанных с ними деструкторов. Продукционные процессы ослабляются.

У растений имеет место перекрывание экологических ниш. Оно усиливается в отдельные периоды при ограничении ресурсов среды, но поскольку виды используют ресурсы индивидуально, избирательно и с разной интенсивностью, конкуренция в устойчивых фитоценозах ослабляется.

Рис. 94. Корреляция между разнообразием лиственных ярусов и видовым разнообразием птиц (индексы Шеннона по Макартуру из Э. Пианка, 1981)

Список литературы

    Шилов И. А. Экология. М.: Высшая школа, 1997.

    Христофорова Н.К. Основы экологии. Владивосток: Дальнаука, 1999.

    Гиляров А. М. Популяционная экология. М.: Изд-во МГУ, 1990.

Экологическая ниша

Экологическая ниша, место, занимаемое видом (точнее -- его популяцией) в сообществе (биоценозе). Взаимодействие данного вида (популяции) с партнёрами по сообществу, в которое он входит в качестве сочлена, определяет его место в круговороте веществ, обусловленном пищевыми и конкурентными связями в биоценозе. Термин "Э. н." предложен американским учёным Дж. Гринеллом (1917). Трактовка Э. н. как положения вида в цепях питания одного или нескольких биоценозов была дана английским экологом Ч. Элтоном (1927). Подобное толкование понятия Э. н. позволяет дать количественную характеристику Э. н. для каждого вида или для его отдельных популяций. Для этого сопоставляют в системе координат обилие вида (число особей или биомассу )с показателями температуры, влажности или любого другого фактора среды. Таким путём можно выделить зону оптимума и пределы выносимых видом отклонений -- максимум и минимум каждого фактора или совокупности факторов. Как правило, каждый вид занимает определённую Э. н., к существованию в которой он приспособлен всем ходом эволюционного развития. Место, занимаемое видом (его популяцией) в пространстве (пространственная Э. н.), чаще называют местообитанием .

Модель экологической ниши, предложенная Г. Е. Хатчинсоном

довольно проста: достаточно на ортогональных проекциях отложить значения интенсивности различных факторов, а из точек пределов толерантности восстановить перпендикуляры, то ограниченное ими пространство и будет соответствовать экологической нише данного вида. Экологическая ниша -- это область комбинаций таких значений факторов среды, в пределах которой данный вид может существовать неограниченно долго.

Например, для существования наземного растения достаточно определенного сочетания температуры и влажности, и в этом случае можно говорить о двумерной нише. Для морского животного уже необходимо кроме температуры еще как минимум два фактора -- соленость и концентрация кислорода -- тогда уже следует говорить о трехмерной нише, и т. д. На самом деле этих факторов множество и ниша многомерна.

Экологическую нишу, определяемую только физиологическими особенностями организмов, называют фундаментальной, а ту, в пределах которой вид реально встречается в природе, --- реализованной.

Реализованная ниша -- это та часть фундаментальной ниши, которую данный вид, популяция в состоянии «отстоять» в конкурентной борьбе. Конкуренция, по Ю. Одуму (1975, 1986), -- отрицательные взаимодействия двух организмов, стремящихся к одному и тому же (табл. 4.1). Межвидовая конкуренция -- это любое взаимодействие между популяциями, которое вредно сказывается на их росте и выживании. Конкуренция проявляется в виде борьбы видов за экологические ниши.

есуществует двух различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется, по существу, одна и та же ниша. В этом случае, когда ниши частично перекрываются, возникает особо жесткая конкуренция, но в конечном итоге нишу занимает один вид. Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения, или принципа Гаузе, в честь ученого, доказавшего его существование экспериментально в 1934 г.

Нейтрализм -- это такая форма биотических взаимоотношений, когда сожительство двух видов на одной территории не влечет за собой ни положительных, ни отрицательных последствий для них. В этом случае виды не связаны непосредственно друг с другом и даже не контактируют между собой. Например, белки и лоси, обезьяны и слоны и т. п. Отношения нейтрализма характерны для богатых видами сообществ.

Аменсализм -- это биотические отношения, при которых происходит торможение роста одного вида (аменсала) продуктами выделения другого. Такие отношения обычно относят к прямой конкуренции и называют антибиозом. Наиболее хорошо они изучены у растений, которые применяют различные ядовитые вещества в борьбе с конкурентами за ресурсы, и данное явление называют аллелопатия.

Аменсализм весьма распространен в водной среде. Например, сине-зеленые водоросли, вызывая цветение воды, тем самым отравляют водную фауну, а иногда даже скот, который приходит на водопой. Аналогичные «способности» проявляют и другие водоросли. Они выделяют пептиды, хинон, антибиотики и другие вещества, которые ядовиты даже в малых дозах. Называют эти яды эктокринными веществами.

Хищниками называют животных, питающихся другими животными, которых они ловят и умервщляют. Для хищников характерно охотничье поведение. Изобилие насекомых, их малые размеры и легкодоступность превращают деятельность плотоядных хищников, обычно птиц, в простое «собирательство»

добычи, подобно тому как собирают семена,"зерна птицы, пи-таюшиеся ими. Насекомоядные хищники по способу овладела пищей приближаются к пастьбе травоядных животных. Некоторые птицы могут питаться и насекомыми и семенами.

Итак, наиболее жесткая конкуренция проявляется тогда, когда контакт между популяциями установлен недавно, например, вследствие изменений, произошедших в экосистеме под влиянием деятельности человека. Именно поэтому непродуманное вмешательство человека в структуру биоценоза нередко приводит к эпидемическим вспышкам.

Экологическое дублирование

Известный русский лесовед Г.Ф.Морозов (1912), опираясь на учение В. В. Докучаева и работы К. Мебиуса, сформулировал правило:

в природе не существует полезных и вредных птиц, полезных и вредных насекомых, там все служит друг другу и взаимоприспособлено.

Современная формулировка правила Мебиуса--Морозова - правила взаимоприспособленности организмов в биоценозе - гласит:

виды в биоценозе приспособлены друг к другу настолько, что их сообщество составляет внутреннее противоречивое, но единое и взаимно увязанное системное целое.

Ю. Одум установил правило «метаболизм и размеры особей», которое в идеальных условиях имеет всеобщее значение:

при неизменном энергетическом потоке в пищевой сети или цепи более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные. Значительная часть энергии уходит на поддержание обмена веществ.

Правило Ю. Одума особенно важно в связи с тем, что из-за антропогенного нарушения природной среды происходит измельчение «средней» особи живого на суше - крупные звери и птицы истреблены и вообще все крупные представители растительного и животного мира становятся все более и более раритетными. Поэтому неминуемо следует ожидать общее снижение относительной продуктивности организмов суши и термодинамический разлад в сообществах и биоценозах.

Если же измельчание особей ведет к производству относительно меньшего количества биомассы, то ее удельный выход с единицы площади (из-за более полного заселения пространства) увеличивается. Данный эмпирический факт Н. Ф. Реймерс назвал законом удельной продуктивности:

никогда слоны не дадут той биомассы и продукции с единицы площади, которую способна дать саранча и тем более совсем мелкие беспозвоночные.

Исчезновение видов, представленных крупными особями, меняет вещественно-энергетическую структуру биоценозов. Так как энергетический поток, проходящий через биоценоз в целом, практически не меняется (иначе бы произошла смена типа биоценоза), включаются механизмы биоценотического или экологического дублирования: организмы одной трофической группы или уровня экологической пирамиды закономерно замещают друг друга. Правило (принцип) экологического дублирования Н. Ф. Реймерс сформулировал следующим образом:

исчезающий или уничтожаемый вид живого в рамках одного уровня экологической пирамиды заменяет другой функционально-биоценотически аналогичный. Замена происходит по схеме: мелкий сменяет крупного, эволюционно нижеорганизованный - более высокоорганизованного, более генетически лабильный и мутабельный - менее генетически изменчивого.

Поскольку экологическая ниша в биоценозе не может пустовать, экологическое дублирование происходит обязательно. Действительно, копытных в степи сменяют грызуны, а в ряде случаев растительноядные насекомые. При отсутствии хищников на водоразделах южного Сахалина в зарослях бамбука их роль выполняет серая крыса.

Несколько позже правила смены видов в биоценозах Н. Ф. Реймерс сформулировал в более популярной форме:

  • * «свято место пусто не бывает»;
  • * крупные организмы исчезают раньше, и их сменяют мелкие;
  • * как правило, более эволюционно высокоорганизованные виды бывают вытеснены менее высокоорганизованными, быстрее размножающимися существами;
  • * всегда побеждают те, кто легче и быстрее изменяется, в том числе генетически.

Проанализировав описанные теоретические основы закономерностей дублирования в биоценозах, Н. Ф. Реймерс (1973) выдвинул гипотетическую теорию механизма возникновения новых инфекционных заболеваний человека путем замены видов на неблагоприятные, опубликованную из-за существовавших ограничений только в 1983 г.

Он предположил, что в одних случаях возникает совершенно новая экологическая ниша, а в других случаях борьба с существующими заболеваниями и уничтожение их возбудителей освобождает такую нишу в человеческих популяциях.

Так, за 13 лет до открытия вируса иммунодефицита человека (ВИЧ) - возбудителя синдрома приобретенного иммунного дефицита (СПИД) - была предсказана вероятность появления «гриппоподобного заболевания с высокой летальностью». Организм человека - это место жизни многих, в том числе болезнетворных организмов. Когда многие болезни были побеждены и уничтожены их возбудители, появилась свободная экологическая ниша. Ее и заполнил вирус СПИДа, соответствующий приведенным свойствам: мелок, примитивен, относительно быстро размножается и очень изменчив.

Установлено, что в биоценозах существует столько видов, сколько необходимо для максимальной утилизации приходящей энергии и обеспечения круговорота веществ в пределах энергетического потока. В связи с этим к правилу Уоллеса добавляется принцип эколого-географического максимума (стабильности числа) видов:

число видов в составе географических зон и их биоценозов - относительно постоянно и регулируется вещественно-энергетическими процессами; это число всегда стремится к необходимому и достаточному максимуму.

Дублирование - один из природных механизмов поддержания надежности биоценозов. Это наиболее мобильный способ их адаптации. При этом возможны и генетические изменения в популяциях типа усиления хищнических наклонностей у крысы в приведенном ранее для Сахалина примере. Также возможно межвидовое и внутривидовое дублирование, а в сельском хозяйстве даже межсортовое. Общий «смысл» дублирования остается тем же: максимально полно провести и использовать поток энергии, стабилизировать биоценоз в меняющихся условиях существования.

Это свойство было подмечено А. А. Еленкиным (1921), определившим принцип подвижного равновесия: биотическое сообщество сохраняется как единое целое вопреки регулярным колебаниям среды его существования, но при воздействии необычных факторов структурно изменяется с переносом «точки опоры» на другие растительные компоненты (группы растений).

Если необычные, нерегулярные факторы оказывают многолетнее воздействие, то сообщество формирует иную структуру. Однако, как правило, в биоценозе сохраняются элементы дублирования в виде очень большого числа видов, которые могут быть мобилизованы в случае новых резких изменений среды.

Балансовый подход был уточнен Г. Реммертом (1978), сформулировавшим принцип продукционной оптимизации:

отношение между первичной и вторичной продукцией (между продуцентами и консументами) соответствует принципу оптимизации - «рентабельности» биопродукции.

Как правило, растения и другие продуценты дают биомассу достаточную, но не излишнюю для потребления всем биотическим сообществом (с эволюционно определенным запасом, который обеспечивает надежность системы и обычно в 100 раз превышает потребление в биоценозах суши). При относительном «перепроизводстве» органического вещества биоценоз становится «нерентабельным» и возникают предпосылки для массового размножения отдельных видов. После периода автоколебаний соотношение «популяция--потребление» уравновешивается, биоценоз стабилизируется, балансируются отношения между трофическими уровнями.

Именно как результат экологического дублирования, сдвига в подвижном равновесии и снижения «рентабельности» биоценоза возникают явления массового размножения нежелательных для хозяйства организмов. Монокультура в сельском хозяйстве, однопородные и одновозрастные леса «с позиций природы» чрезвычайно мало рентабельны, неравновесны и потому «требуют исправления» массовыми организмами.

Для хозяйственной деятельности особенно велико значение правила монокультуры Ю. Одума:

эксплуатируемые для нужд человека экосистемы (биоценозы), представленные одним видом, равно как и системы монокультур (например, сельскохозяйственные монокультуры), неустойчивы по своей природе.

Пагубность монокультур «учтена» природой. Более того, ею выработана стратегия сохранения гомеостаза на основе поддержания разнообразия и взаимозависимости членов биоценоза. Один из путей реализации такой стратегии отражает принцип П. Эрлиха и П. Равена или теории сопряженной эволюции, называемой также принципом коэволюции:

случайное функциональное изменение жертв (потребляемого растения) ведет к закономерному изменению свойств хищников (потребителей), что в свою очередь стимулирует разнообразие как первых, так и вторых.

Все перечисленные закономерности саморегуляции биоценозов обобщены Н. Ф. Реймерсом в виде принципа стабильности:

любая относительно замкнутая биосистема с проходящим через нее потоком энергии в ходе саморегуляции развивается в сторону устойчивого состояния.

Им же сформулировано и обобщающее правило биоценотической надежности:

надежность биоценоза зависит от его энергетической эффективности в данных условиях среды и возможностей структурно-функциональной перестройки в ответ на изменение внешних воздействий (материала для дублирования, межвидового и внутривидового, поддержания продукционной «рентабельности» и т. п.).

Вопрос 4. Энергетика экосистемы. Описать процесс передачи энергии в биосфере. Закономерности перехода энергии вместе с пищей (формула энергии потребленной пищи). Как проявляется первое и второе начало термодинамики применительно к живому организму. Дайте определение термодинамического равновесия. Дать определение энтропия и негэнтропия.

Энергетика экосистем.

Жизнь, возникнув на Земле, вот уже на протяжении миллиардов лет находится в постоянном развитии. Это происходит благодаря тому, что элементы живого вещества, поступающие из окружающей среды, пройдя через ряд организмов, снова возвращаются во внешнюю среду, а затем опять включаются в состав живого вещества. Таким образом, каждый элемент используется живой материей многократно. Именно круговоротом веществ и обусловлено неограниченное временем существование и постоянное развитие и совершенствование жизни на Земле. Этот так называемый биогенный круговорот веществ -- важнейшая функция любого биогеоценоза. Его характер определяют изменения массы живых организмов (биомассы), структуры биогеоценоза, химизма среды. Однако биогенный круговорот веществ не следует понимать в абсолютном смысле. Как бы там ни было, эти вещества, переходя с одного трофического уровня на другой, высвобождаясь и вновь включаясь в состав живого вещества, частично исключаются из круговорота. В результате на Земле происходит накопление органических соединений в виде залежей полезных ископаемых (торф, уголь, нефть, газ, горючие сланцы). Но все это не отвергает общего правила. Существенно биомасса на Земле не накапливается, а удерживается на каком-то определенном уровне, поскольку она постоянно разрушается и вновь созидается из одного и того же строительного материала, т. е. в ее пределах протекает беспрерывный круговорот веществ.

  • ? Биогенный круговорот веществ принял определенный характер с появлением зеленых растений, осуществляющих процессы фотосинтеза. Рассмотрим это на примере круговорота кислорода -- продукта фотосинтеза растений. Практически весь молекулярный кислород земной атмосферы возник и поддерживается на определенном уровне благодаря деятельности зеленых растений. В большом количестве он расходуется организмами в процессе дыхания. Но, кроме того, обладая высокой химической активностью, кислород непрерывно вступает в соединения почти со всеми элементами земной коры. Если бы зеленые растения не выделяли такого огромного количества кислорода, он бы в конце концов полностью исчез из атмосферы, и тогда преобразился бы весь облик Земли: исчезли бы почти все организмы, прекратились бы все окислительные процессы -- планета наша стала бы безжизненной. Однако это ей не угрожает именно потому, что в природе происходит нескончаемый круговорот веществ. Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связываясь при дыхании и высвобождаясь при фотосинтезе) за 2000 лет, углекислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 000 000 лет.
  • ? Однако для столь грандиозного биологического круговорота веществ необходима энергия. Источником ее является солнечная радиация, аккумулируемая зелеными растениями-автотрофами. Солнечная энергия также регулярно циркулирует в биогеоценозе. Но в отличие от круговорота веществ, который протекает по замкнутому кругу, переходя в цепях питания с одного трофического уровня на другой, энергия постоянно расходуется. До 30 % ее рассеивается в атмосфере или отражается облаками и поверхностью Земли, до 20 % поглощается в верхних слоях атмосферы (водяные пары, капельки воды, пылевые частицы), приблизительно 50 % достигает суши и поверхности океана и поглощается в форме теплоты. Лишь ничтожная часть, всего около 0,1--0,2 % энергии, получаемой Землей от Солнца, улавливается зелеными растениями и обеспечивает весь биологический круговорот веществ в биосфере.

Более половины энергии, связанной при фотосинтезе, тут же расходуется на дыхание растений, а остальная поступает в пищевые цепи.

Суммарно только около 1 % лучистой энергии Солнца, которая падает на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ. Более половины этой энергии расходуется на жизнь самих растений, а остальная поступает в пищевые цепи и может быть использована гетеротрофными организмами при питании. Когда животное съедает растение, большая часть энергии, которая содержится в пище, используется на различные процессы жизнедеятельности, превращаясь при этом в теплоту и рассеиваясь в пространстве. Только 5--20 % энергии пищи переходит во вновь созданное живое вещество тела животного. Если растительноядное животное съедается хищником, то вновь теряется большая часть заключенной в пище энергии. В результате таких огромных потерь полезной энергии цепи питания не могут быть очень длинными.

Таким образом, энергия Солнца, утилизированная зелеными растениями, превращается в потенциальную энергию химических связей органических соединений, из которых строится тело самих растений. В организме растительноядного животного эти органические вещества окисляются с выделением такого количества энергии, которое было затрачено на их синтез растением. Часть ее используется для жизни животного, а остальная, согласно второму закону термодинамики (переход энергии из одной формы в другую сопровождается снижением количества полезной энергии), превращается в теплоту и рассеивается в пространстве, т.е. уходит из биоценоза (энтропия).

Поток энергии в экосистеме может быть проиллюстрирован схемой простой цепи питания Солнечная энергия, полученная растением, лишь частично используется в процессе фотосинтеза углеводов.

Поток энергии через три уровня простой пищевой цепи (по П. Дювиньо, 1973)

Фиксированная в углеводах энергия представляет собой валовую продукцию биогеоценоза (Пв). Углеводы идут на построение протоплазмы и рост растений, причем часть их энергии затрачивается на дыхание (Д1). В результате чистая продукция (Пч) определяется по формуле

Пч = Пв - Д1.

Таким образом, поток энергии, проходящий через уровень продуцентов, т.е. валовую продукцию, можно представить так: Пв = Пч + Д1

Определенный объем созданных продуцентами веществ служит кормом (К) фитофагов, остальные в конце концов отмирают и перерабатываются редуцентами (Н). Корм, ассимилированный фитофагами (А2), лишь частично используется для образования их биомассы (П2).

В основном он растрачивается на обеспечение энергией процессов дыхания (Д2) и в некоторой степени выводится из организма в виде выделений и экскрементов (Э). Поток энергии, проходящий через второй трофический уровень, выражается следующим образом:

А2 = П2 + Д2.

Консументы второго порядка (хищники) не истребляют всю биомассу своих жертв, но и из того количества ее, которое они уничтожают, лишь часть используется на создание биомассы их собственного трофического уровня. Остальная же часть в основном затрачивается на энергию дыхания, а также выделяется с экскретами и экскрементами. Поток энергии, проходящий через уровень консументов второго порядка (плотоядные), выражается формулой:

Аз = Пз + Дз.

Анализируемая схема наглядно показывает, что поток энергии, который выражается количеством ассимилированного по цепи питания вещества, на каждом трофическом уровне уменьшается, т.е. Пч>П2>Пз и т. д.

Таким образом, поскольку определенное количество вещества может быть использовано каждым биоценозом неоднократно, а порция энергии -- лишь один раз, в экосистеме осуществляется не «круговорот веществ и энергии», как иногда указывается, а каскадный перенос (поток) энергии и круговорот веществ, т.е. применение понятия «круговорот» правомерно только по отношению к веществам.

Поток энергии в биосфере (по Ф. Рамаду, 1981)

Этот процесс протекает в природе с определенной скоростью. Поэтому биологическую продуктивность можно выразить продукцией за сезон, за год, за несколько пет или за любую другую единицу времени. Для наземных и донных организмов она определяется количеством биомассы на единицу площади, а для планктонных и почвенных -- на единицу объема.

Следовательно, биологическая продуктивность представляет собой количество воспроизведенной биомассы на 1 м 2 площади (или на 1 м 3 объема) в единицу времени и выражается чаще всего в граммах углерода или сухого органического вещества. Биологическую продуктивность нельзя смешивать с биомассой. Допустим, за год планктонные водоросли на единицу площади синтезируют столько же органического вещества, сколько и высокопродуктивные леса, однако биомасса последних в сотни тысяч раз больше.

Биомасса того или иного биоценоза не дает четкого представления о его продуктивности. Это связано с тем, что скорость образования биомассы (продуктивность) в разных биоценозах неодинакова. Поэтому биоценозы различаются не только биомассой, но и продуктивностью, т. е. скоростью создания определенного количества биомассы. Луговые степи дают больший годовой прирост биомассы, чем хвойные леса. При средней фитомассе 23 т/га годовая продукция их (оставляет 10 т/га, тогда как у хвойных лесов при фитомассе 200 т/га она равна 6 т/га. Популяции мелких млекопитающих по сравнению с крупными обладают большой скоростью роста и размножения и дают более высокую продукцию при равной биомассе.

Таким образом, чтобы оценить значение вида (группы видов) для круговорота веществ и в отношении его биологической продуктивности в биоценозе или в биогеоценозе в целом, нужно знать не только его биомассу, но и относительную скорость прироста или время ее полного возобновления.

Продукция каждой популяции за определенное время представляет собой сумму прироста всех особей, включая отделившиеся от организма образования и устраненные (элиминация) по разным причинам особи (смерть, миграция).

В том случае, когда все особи доживают до конца изучаемого периода, продукция равна приросту биомассы. В природе это исключено, и продукция популяции обычно рассчитывается по формуле:

Р = (В2 - В1) + Е,

где Р -- продукция; В1 и В2 -- соответственно начальная и конечная биомасса; Е -- элиминация.

Это так называемая чистая продукция. Валовая продукция включает в себя прирост (чистая продукция) и затраты на энергетический обмен.

Необходимо различать первичную продукцию, т.е. продукцию автотрофных организмов, и первичную продуктивность, т.е. скорость, с которой автотрофные организмы (продуценты) в процессе фотосинтеза связывают энергию и запасают ее в форме органического вещества.

Подсчитано, что солнечная энергия, достигающая поверхности Земли в течение года, исчисляется в 5-10 20 ккал (21 *10 20 кДж). Это составляет 9 млрд. ккал (37,8-10 9 кДж) на гектар. Один гектар леса в средних широтах продуцирует до 6 т древесины и 4 т листьев, сжигание которых дает 46 млн. ккал (193,2-10 6 кДж). Значит, эффективность первичной продуктивности леса, т. е. эффективность использования растениями солнечной энергии для создания органического вещества, составляет всего около 0,5% (46х100:9). Конечно, цифры эти чрезвычайно относительны, поскольку эффективность первичной продуктивности зависит от возраста леса, количества деревьев, погодных условий и многих других факторов. Но тем не менее они дают представление о коэффициенте полезного действия биоценоза.

Консументы образуют свою биомассу. Для обозначения биомассы и скорости ее образования консументами применяются термины «вторичная продукция», т. е. продукция гетеротрофных организмов, и «вторичная продуктивность», т. е. скорость образования продукции гетеротрофами. Как уже отмечалось, поток энергии от продуцентов к консументам сопровождается потерями ее. Дело в том, что значительная часть съеденного гетеротрофами корма расходуется на теплопродукцию, на выработку энергии, необходимой для их жизнедеятельности, и лишь небольшое количество его (1,3--2%) используется на создание вторичной продукции. Например, для получения 1 кг говядины требуется от 70 до 90 кг свежей травы.

При этом необходимо учитывать, что все виды, дающие вторичную продукцию, возникают на основе утилизации вещества и энергии первичной продукции. Но так как при переходе с одного трофического уровня на другой энергия частично затрачивается на нужды энергетического обмена и рассеивается, то продукция каждого последующего трофического уровня меньше продукции предыдущего. Например. продукция (ее выход) фитофагов всегда больше, чем у живущих за их счет хищников.

Большое значение в механизме биологического продуцирования имеют гетеротрофные организмы, утилизирующие поступающее со всех трофических уровней мертвое органическое вещество, частично минерализуя его, частично превращая в вещество микробных тел. Последнее служит важным источником питания многих водных и почвенных животных.

Кроме первичной и вторичной продукции биоценозов, различают промежуточную и конечную продукции. Промежуточная продукция отличается тем, что после потребления другими членами биогеоценоза возвращается в круговорот веществ этой же системы. Конечная продукция исключается из данного биогеоценоза, т. е. выводится за его пределы. Это, к примеру, продукция, получаемая человеком в процессе возделывания сельскохозяйственных культур, разведения домашних животных, охоты, промысла и т. д.

Применение первого начала термодинамики к живому организму

В отличие от тепловых машин, живые организмы производят A не за счет тепловой энергии, а за счет использования химической энергии пищевых продуктов, усвоенных ими. В этой связи уравнение, согласно которому изменение U системы равно ее обмену энергии с окружающей средой, имеет вид:

ДU = Wпищи - Q - A,

Wпищи = ДU + Q + A

Организм животных имеет постоянную температуру, и химический состав его в среднем не изменяется, поэтому такого организма. Следовательно, изменение ДU=0. Тогда данное уравнение имеет вид:

Wпищи = Q + A

Поскольку существует множество видов работ и обмена тепла с окружающей средой, то уравнение можно представить:

Первое начало термодинамики применительно к живым организмам.

Следует заметить, что первичным источником энергии служит Солнце. Мощность солнечного излучения примерно составляет 1026 Вт, но только небольшая ее часть, примерно 2х10 17 Вт достигает поверхности Земли, а из этой части, 0,02 % поглощается зелеными растениями и запасается ими в процессе фотосинтеза. Следовательно, поток энергии, извлекаемый зелеными растениями из солнечного света, имеет порядка 4х10 13 Вт. За счет этой энергии работают все тепловые машины и осуществляются все процессы жизнедеятельности.

Однако, способы преобразования в работу солнечной энергии, аккумулированной зелеными растениями в форме химической энергии, в принципе не одинаковы в тепловых машинах и биологических системах. Различия термодинамических процессов можно рассмотреть следующей схемой:

В тепловой машине:

В биологической системе:

Как уже отмечалось, источником G для всех живых существ служит Солнце. Земные растения (аутотрофы) за счет фотосинтеза, создают в тече-ние года примерно 1010 тонн питательных веществ. Гетеротрофы сами не могут питаться светом, они получают G, поедая друг друга или питаясь растениями. Пищеварение обеспечивается поступлением в клетки продуктов гидролиза пищи, то есть, углеводов, белков, жиров, в которых заключена G солнечного света.

Основным способом использования G питательных веществ организ-мом является их биологическое окисление. Оно происходит главным образом на внутренней мембране митохондрий, где сосредоточены ферменты, катализирующие биологическое окисление (клеточное дыхание). Поэтому митохондрии часто называют энергетическим цехом клетки.

Энергия, извлекаемая из химических связей питательных веществ при их биологическом окислении, в некоторых случаях может быть непосредственно использована для осуществления жизнедеятельности, но основная ее часть идет на синтез так называемых макроэнергетических соединений, среди которых наиболее важным является АТФ.

Энергия, запасенная в макроэргах, используется организмом для совершения различных видов работ, причем механическая (мышечная работа) не является самой энергоемкой. В жизни человека огромные затраты G энергии идут на синтез сложных биомолекул. Так, для синтеза одного моля белка, требуется от 12000 до 200 тыс. кДж G. "В сборке" одной молекулы белка участвуют от 1000 до 16 тыс. молекул АТФ (КПД примерно 40 %) Для синтеза молекулы РНК необходимо примерно 6 тыс. молекул АТФ, еще большей энергии требуется для образования ДНК, так, на создание одной молекулы ДНК тратится 12х10 7 молекул АТФ. Однако, количество синтезирующихся молекул белка значительно больше, чем нуклеиновых кислот, в силу разнообразия его функций и постоянного быстрого обновления. В результате, именно синтез белка в организме наиболее энергоемок, по сравнению с другими биосинтетическими процессами, так, в течение каждого часа жизни у млекопитающих белок клеток обновляется примерно на 1%. А белки-ферменты на 10%. У человека, массой 70 кг, ежечасно обновляется примерно 100 грамм белка.

Другой важной "статьей" расхода G в организме является поддержание физико-химических градиентов на клеточных мембранах. Внутри живой клетки концентрация ионов ивещества, отличается от межклеточной среды, то есть, на клеточной мембране существует градиент концентрации. Различие концентрации ионов и молекул вызываются появлением и других градиентов: остматического, электрического, фильтрационного и т.д.

Наличие градиентов вызывает непрерывный перенос вещества через клетки мембран (пассивный транспорт). Пассивный транспорт должен был бы уменьшить величину градиентов, то есть, выровнять концентрацию и другие физико-химические параметры. Однако, в нормальных условиях функционирования клетки, градиенты на мембране стабильно поддержива-ются на определенном уровне, что обусловлено способностью биологической системы переносить вещества против градиентов. Такой транспорт называется активным транспортом. Активный транспорт нуждается в затратах G на него, которое в большинстве случаев черпается из АТФ следовательно активный транспорт представляет собой одну из форм работы биологической системы с КПД примерно 20-25%. КПД мышечного сокращения организма не превышает 20%.

Второе начало термодинамики

Второе начало термодинамики является законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы.

В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д.

Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики возникло исторически при анализе работы тепловых машин.

Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «…невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым».

Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких-либо устройств без использования каких-либо других процессов.

В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара».

Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы.

Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери.

Кроме того, отсюда также следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.

В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S ).

Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения.

В принципе можно определить общее число этих всевозможных состояний.

Параметр, который характеризует общее число этих состояний, и есть энтропия.

Рассмотрим это на простом примере.

Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T 1 > T 2 . Тело «1» отдает некоторое количество тепла Q , а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии.

По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения. Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии dS і 0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны.

Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней.

Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность)

S = k lnP ,

где k -- постоянная Больцмана, P - статистический вес.

k = 1.37·10 -23 Дж/К.

Статистический вес Р пропорционален числу возможных микроскопических состояний элементов макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует возможное несоответствие микроскопического описания макросостояния.

Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

W ~ exp (S /k ).

Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются.

Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени. Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в уравнении (1.7), приводит к изменению вероятности данного макросостояния W в огромное число раз.

Именно этот факт является причиной того, что для системы с большим числом частиц следствия второго начала термодинамики практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само второе начало термодинамики.

Буквальное применение второго начала термодинамики ко Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как в природе в принципе не может существовать абсолютно изолированных систем. Как будет показано далее, в разделе 1.4, процессы, протекающие в открытых системах, подчиняются другим законам и имеют другие свойства.

Равновесие термодинамическое

Равновесие термодинамическое, состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем. Изоляция не исключает возможности определённого типа контактов со средой (например, теплового контакта с термостатом , обмена веществом и др.). Процесс перехода системы в равновесное состояние называемое релаксацией . При Р. т. в системе прекращаются все необратимые процессы , связанные с диссипацией энергии , -- теплопроводность, диффузия, химические реакции и т.д. Равновесное состояние системы определяется значениями её внешних параметров (объёма, напряжённости электрического или магнитного поля и др.), а также значением температуры . Строго говоря, параметры состояния равновесной системы не являются абсолютно фиксированными -- в микрообъёмах они могут испытывать малые колебания около своих средних значений (флуктуации ).

Изоляция системы осуществляется в общем случае при помощи неподвижных стенок, непроницаемых для вещества. В случае, когда изолирующие систему неподвижные стенки практически не теплопроводны (например, в Дьюара сосудах ),имеет место адиабатическая изоляция, при которой энергия системы остаётся неизменной. При теплопроводящих (диатермических) стенках между системой и внешней средой, пока не установилось равновесие, возможен теплообмен . При длительном тепловом контакте такой системы с внешней средой, обладающей очень большой теплоёмкостью (термостатом), температуры системы и среды выравниваются и наступает Р. т. При полупроницаемых для вещества стенках Р. т. наступает в том случае, если в результате обмена веществом между системой и внешней средой выравниваются химические потенциалы среды и системы.

Одним из условий Р. т. является механическое равновесие, при котором невозможны никакие макроскопические движения частей системы, но поступательное движение и вращение системы как целого допустимы При отсутствии внешних полей и вращения системы условием её механического равновесия является постоянство давления во всём объёме системы. Другие необходимые условия Р. т. -- постоянство температуры и химического потенциала в объёме системы. Достаточные условия Р. т. (условия устойчивости) могут быть получены из второго начала термодинамики (принципа максимальной энтропии );к ним, например, относятся: возрастание давления при уменьшении объёма (при постоянной температуре) и положительное значение теплоёмкости при постоянном давлении. В общем случае система находится в Р. т. тогда, когда термодинамический потенциал системы, соответствующий независимым в условиях опыта переменным, минимален. Например, при заданных объёме и температуре должна быть минимальна свободная энергия , а при заданных давлении и температуре -- термодинамический потенциал Гиббса (см. Потенциалы термодинамические ).

Энтропия

Энтропия -- это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, что коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.

где ДS -- изменение энтропии, ДQ -- изменение теплоты , T -- абсолютная термодинамическая температура.

Следовательно, количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной. Другими словами, количество энергии во вселенной остается постоянным, но ее способность использования для того, чтобы проделать полезную работу, уменьшается при каждой теплопередаче и выполнении работы. Энтропия используется для измерения уменьшения пригодности энергии в результате процесса.

Термин «энтропия» используется для описания количества хаотичности в любой системе. В термодинамике энтропия указывает расположение молекул вещества или организацию энергии системы. Системы или вещества с высоким значением энтропии более дезорганизованы, чем с низким. Например, у молекул в твердых телах определенная кристаллическая структура, благодаря чему они лучше организованы, и у них ниже значение энтропии. При сообщении телу теплоты и изменении его состояния на жидкое увеличивается уровень его энтропии, так как кинетическая энергия увеличивает колебания молекул, в результате чего их положение становится случайным.

Энтропия увеличивается, когда жидкость изменяет состояние на газообразное при потреблении большего количества тепловой энергии. Такая же аналогия существует при описании порядка источников энергии. Если энергия заключена в ограниченном источнике, у нее низкое значение энтропии. Если она распределена среди большого количества молекул, ее интенсивность уменьшается, увеличивая энтропию. Например, если 1,05 кДж энергии у 1000 молекул передать 1 миллиону молекул, интенсивность энергии уменьшится, а энтропия возрастет. Энтропию трудно понять, так как это абстрактное понятие беспорядка энергии во вселенной. Этот беспорядок связан с уменьшением пригодности энергии для преобразования в работу. Энергия всегда становится недоступной, если процессы уменьшают ее интенсивность, распространяя ее по вселенной. Если энергия распределена среди бесчисленных молекул вселенной, разница температур самых холодных и самых теплых участков уменьшается. Если разница температур уменьшается, тепловая энергия, которую можно преобразовать в полезную работу, также уменьшается. Следовательно, любой процесс, который производит увеличение энтропии, уменьшает энергию для будущих процессов. В конечном счете наступит момент, когда энтропия вселенной приблизится к максимальному значению, и преобразование теплоты в работу станет невозможным.

Все процессы теплопередачи в конечном счете увеличивают энтропию вселенной. Хотя энтропия двух процессов может показать математическое уменьшение, как в процессе конденсации или переохлаждения энтропия вселенной все равно увеличивается, так как во всех процессах передачи теплоты от более холодных участков более теплым выполняется работа. Данная работа больше увеличивает энтропию, чем уменьшает при теплопередаче жидкости, когда она охлаждается или конденсируется.

Абсолютная энтропия (S) вещества или процесса -- это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре. Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах. У энтропии такая же данная температура, как и данная энтальпия определенного вещества.

Негэнтропия

"отрицательная энтропия", энтропия, зачем-то умноженная на минус один, скорее всего, для того, чтобы влегкую "изобрести сущность"; энтропия - (от греч. entropia - превращение) в термодинамике - функция, приращение которой равно отношению количества тепла, полученного системой, к температуре, обладает свойствами потенциала, т.е. зависит от начального и конечного состояния системы и не зависит от траектории; в статфизике величина, пропорциональная логарифму вероятности нахождения системы в определенном состоянии, эти два определения связаны; в обыденной речи неспособность к действию, мера хаоса, дезорганизации; понятия энтропии и негэнтропии являются также распространенными заклинаниями, произносимыми обычно при обсуждении вопроса от сущности жизни, важности экологии, судьбе цивилизации и т.п., наподобие понятий "поле", "смысл", "эволюция".

Экологические ниши

Экологической нишей называют положение вида, ĸᴏᴛᴏᴩᴏᴇ oi занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды. Экологическая ниша отображает участие вида в биоценозе. При этом имеется в виду не территориальное его размещение, а функциональное проявление организма в сообществе. По выражению Ч. Элтона (1934), экологическая ниша - ʼʼэто место в живом, окружении, отношение вида к пище и к врагамʼʼ. Концепция экологической ниши оказалась весьма плодотворной для понимания законов совместной жизни видов. Помимо Ч. Элтона над ее развитием работали многие экологи, среди них Д. Гриннелл, Г. Хатчинсон, Ю. Одум и др.

Существование вида в сообществе определяется сочетанием и действием многих факторов, но в определœении принадлежности организмов к какой-либо нише исходят из характера питания этих организмов, из их способности добывать или поставлять пищу. Так, зелœеное растение, принимая участие в сложении биоценоза, обеспечивает существование целому ряду экологических ниш. Это бывают ниши, охватывающие организмы, питающиеся тканями корней или тканями листьев, цветками, плодами, выделœениями корней и т. д. (рис. 11.11).

Рис. 11.11. Размещение экологических ниш, приуроченных к растению:

1 - корнееды; 2 - поедающие корневые выделœения; 3 - листоеды; 4 - стволоеды, 5 - плодоеды; 6 - семяеды; 7 - цветкоеды; 8 - пыльцееды; 9 - сокоеды; 10 - почкоеды

(по И. Н. Пономаревой, 1975)

Каждая из этих ниш включает в себя разнородные по видовому составу группы организмов. Так, в экологическую группу корнеедов входят и нематоды, и личинки некоторых жуков (щелкуна, майского хруща), а в нишу сосущих соки растения - клопы, тли. Экологические ниши ʼʼстеблеедыʼʼ или ʼʼстволоедыʼʼ охватывают большую группу животных, среди которых особенно многочисленны насекомые (древоточцы, древесинники, короеды, усачи и др.).

Следует отметить, что среди них имеются и такие, которые питаются только древесиной живых растений или только корой - те и другие принадлежат к разным экологическим нишам. Специализация видов в отношении пищевых ресурсов уменьшает конкуренцию, увеличивает стабильность структуры сообщества.

Существуют различные типы разделœения ресурсов.

1. Специализация морфологии и поведения в соответствии с родом пищи: к примеру, клюв у птиц должна быть приспособлен для ловли насекомых, долбления отверстий, раскалывания орехов, разрывания мяса и др.

2. Вертикальное разделœение, к примеру, между обитателями полога и лесной подстилки.

3. Горизонтальное разделœение, к примеру, между обитателями различных микроместообитаний. Каждый из этих типов или их комбинация приводит к разделœению организмов на группы, менее конкурирующих между собой, так как каждая из них занимает свою нишу. К примеру, существует разделœение птиц на экологические группы, основанное на месте их питания: воздух, листва, ствол, почва. Дальнейшее подразделœение этих групп исходя из основного типа пищи показано на рис. 11.12.

Рис. 11.12. Разделœение птиц на экологические группы, основанное

на месте их питания: воздух, листва, ствол, земля

(по Н. Грину и др., 1993)

Специализация вида по питанию, использованию пространства, времени активности и другим условиям характеризуется как сужение его экологической ниши, а обратные процессы - как его расширение.

На сужение или расширение экологической ниши вида в сообществе большое влияние оказывают конкуренты. Сформулированное Г. Ф. Гаузе правило конкурентного исключения для близких по экологии видов должна быть выражено таким образом, что два вида не уживаются в одной экологической нише. Выход из конкуренции достигается расхождением требований к среде, изменению образа жизни или, другими словами, является разграничением экологических ниш видов. В этом случае они приобретают способность сосуществовать в одном биоценозе. Так, в мангровых зарослях побережья Южной Флориды обитают самые разные цапли и нередко на одной и той же отмели кормятся рыбой до девяти разных видов. При этом они практически не мешают друг другу, так как в их поведении - в том, какие охотничьи участки они предпочитают и как ловят рыбу, - выработались приспособления, позволяющие им занимать различные ниши в пределах одной и той же отмели. Зелœеная кваква пассивно поджидает рыбу, сидя на выступающих из воды корнях мангровых деревьев. Луизианская цапля делает резкие движения, взбалтывая воду и вспугивая затаившихся рыбок. Снежная цапля в поисках добычи медленно передвигается с места на место.

Наиболее утонченным способом лова пользуется красная цапля, которая сначала взбаламучивает воду, а затем широко раскрывает крылья, создавая тень. При этом, во-первых, она сама хорошо видит всœе происходящее в воде, а, во-вторых, вспугнутые рыбы принимают тень за укрытие, устремляются к нему, попадая прямо в клюв врага. Размеры большой голубой цапли позволяют ей охотиться в местах, не доступных для ее более мелких и коротконогих сородичей. Насекомоядные птицы в зимних лесах России, кормящиеся на деревьях, за счёт разного характера поиска пищи также избегают конкуренции друг с другом. Поползни и пищухи собирают пищу на стволах. Поползни стремительно обследуют деревья, быстро схватывая насекомых, семена, оказавшиеся в крупных трещинах коры, а мелкие пищухи тщательно обшаривают на поверхности ствола малейшие щелки, в которые проникает их тонкий шиловидный клюв. В европейской части России существуют близкие виды синиц, изоляция которых друг от друга обусловлена различиями в местообитаниях, местах кормежки и размерах добычи. Экологические различия отражаются и в ряде небольших деталей внешнего строения, в т.ч. в изменениях длины и толщины клюва (рис. 11.13).

Зимой в смешанных стайках большие синицы ведут широкий поиск пищи на деревьях, в кустах, на пнях, а часто и на снегу. Синицы-гаички обследуют большей частью крупные ветви. Длиннохвостые синицы ищут корм на концах ветвей, а мелкие корольки тщательно обследуют верхние части крон хвойных.

Многочисленные отряды животных, питающихся травой, имеют в своем составе степные биоценозы. Среди них много крупных и мелких млекопитающих, таких, как копытные (лошади, овцы, козы, сайгаки) и грызуны (суслики, сурки, мышевидные). Все они составляют одну большую функциональную группу биоценоза (экосистемы) - травоядных животных. Вместе с тем исследования показывают, что роль этих животных в потреблении растительной массы не одинакова, так как они используют в своем питании разные составные части травяного покрова.

Рис. 11.13. Пищевые угодья у различных видов синиц

(по Е. А. Криксунову и др., 1995)

Так, крупные копытные (в настоящее время это домашние животные и сайгаки, а до освоения человеком степей - только дикие виды) лишь частично, выборочно выедают корм, главным образом высокие, наиболее питательные травы, откусывая их на значительной высоте (4-7 см) от поверхности почвы. Сурки, живущие здесь же, выбирают корм среди травостоя, изреженного и измененного копытными, поедая его, что было им недоступно. Сурки посœеляются и кормятся только там, где нет высококотравья. Более мелкие животные - суслики - предпочитают собирать корм там, где еще сильнее нарушен травостой. Здесь они собирают то, что осталось от кормления копытных и сурков. Между этими тремя группами травоядных животных, образующих зооценоз, наблюдается разделœение функций в использовании биомассы травянистого покрова. Отношения, сложившиеся между этими группами животных, не носят конкурентного характера. Все эти виды животных используют разные составные части растительного покрова, ʼʼдоедаяʼʼ то, что не является доступным другим травоядным. Разнокачественное участие в поедании травостоя или размещение организмов по разным экологическим нишам обеспечивает более сложную структуру биоценоза на данной территории, обеспечивая более полное использование условий жизни в природных экосистемах и максимальное потребление ее продукции. Совместное существование этих животных характеризуется не только отсутствием конкурентных связей, а наоборот, обеспечивает высокую их численность. Так, отмечающееся в последние десятилетия увеличение сусликов и их расселœение - результат усиления выпаса домашних животных в степных районах в связи с увеличением поголовья скота. В местах же, лишенных выпаса (к примеру, заповедные земли), наблюдается сокращение численности сурков и сусликов. На участках с быстрым отрастанием трав (особенно на высокотравных участках) сурки уходят совсœем, а суслики остаются в незначительном количестве.

У растений, живущих в одном ярусе, экологические ниши сходны, что способствует ослаблению конкуренции между растениями разных ярусов и обусловливает освоение ими различных экологических ниш. В биоценозе разные виды растений занимают разные экологические ниши, что ослабляет межвидовую конкурентную напряженность. Один и тот же вид растений в различных природных зонах может занимать разные экологические ниши. Так, сосна и черника в бору-черничнике, водные растения (рдесты, кубышка, водокрас, ряски) посœеляются вместе, но распределяются по различным нишам. Седмичник и черника в лесах умеренной полосы являются типичными теневыми формами, а в лесотундре и тундре растут на открытых пространствах и становятся световыми. На экологическую нишу вида оказывают влияние межвидовая и внутривидовая конкуренции.

При наличии конкуренции с близкородственными или экологически сходными видами зона местообитания сокращается до отщ мальных границ (рис. 11.14), т. е. вид распространяется в наиболе< благоприятных для него зонах, где он обладает преимуществом пс сравнению со своими конкурентами. В случае если межвидовая конкуренция сужает экологическую нишу вида, не давая проявиться в полном объёме, то внутривидовая конкуренция, напротив, способствует расширению экологических ниш. При возросшей численностщ вида начинается использование дополнительных кормов, освоение новых местообитаний, появление новых биоценотических связей.

Рис. 11.14. Разделœение мест обитания вследствие конкуренции

(по Е. А. Криксунову, 1995)

Экологические ниши - понятие и виды. Классификация и особенности категории "Экологические ниши" 2017, 2018.


Любой живой организм приспособлен (адаптирован) к определенным условиям окружающей среды. Изменение её параметров, их выход за некоторые границы подавляет жизнедеятельность организмов и может вызвать их гибель. Требования того или иного организма к экологическим факторам среды обуславливают ареал (границы распространения) того вида, к которому организм принадлежит, а в пределах ареала – конкретные места обитания.

Местообитание – пространственно ограниченная совокупность условий среды (абиотической и биотической), обеспечивающая весь цикл развития и размножения особей (или группы особей) одного вида. Это, например, живая изгородь, пруд, роща, каменистый берег и т.д. При этом в пределах местообитания могут выделяться места с особыми условиями (например, под корой гниющего ствола дерева в роще), в ряде случаев называется микроместообитаниями.

Для совокупной характеристики физического пространства, занимаемого организмами вида, их функциональной роли в биотической среде обитания, включая способ питания (трофический статус), образ жизни и взаимоотношения с другими видами, американским учёным Дж. Гриннеллом в 1928г. введён термин «экологическая ниша». Его современное определение таково.

Экологическая ниша – это совокупность

· Всех требований организма к условиям среды обитания (составу и режимам экологических факторов) и место, где эти требования удовлетворяются;

· Всего множества биологических характеристик и физических параметров среды, определяющих условия существования того или иного вида, преобразование им энергии, обмен информацией со средой и себе подобными.

Таким образом, экологическая ниша характеризует степень биологической специализации вида. Можно утверждать, что местообитание организма – это его «адрес», тогда как экологическая ниша – его «род занятий», или «стиль жизни», или «профессия». Например, местообитание дрозда включает в себя леса, парки, луга, сады, огороды и дворы. Его же экологическая ниша включает такие факторы, как гнездование и высиживание птенцов на деревьях, питание насекомыми, земляными червями и плодами, перенос плодово-ягодных семян со своими экскрементами.

Экологическая специфичность видов подчеркивается аксиомой экологической адаптированности: каждый вид адаптирован к строго определенной, специфичной для него совокупности условий существования – экологической нише.

Поскольку виды организмов экологически индивидуальны, то они имеют и специфические экологические ниши.

Таким образом, сколько на Земле видов живых организмов – столько же и экологических ниш.

Организмы, ведущие сходный образ жизни, как правило, не живут в одних и тех же местах из-за межвидовой конкуренции. Согласно установленному в 1934г. советским биологом Г. Ф. Гаузе (1910-1986) принципу конкурентного взаимоисключения: два вида не занимают одну и ту же экологическую нишу.

В природе также действует правило обязательности заполнения экологических ниш: пустующая экологическая ниша всегда и обязательно будет заполнена.

Народная мудрость сформулировала эти два постулата так: «В одной берлоге не могут ужиться два медведя» и «Природа не терпит пустоты».

Эти системные наблюдения реализуются в формировании биотических сообществ и биоценозов. Экологические ниши всегда бывают заполнены, хотя на это порой требуется значительное время. Встречающееся выражение «свободная экологическая ниша» означает, что в определенном месте слаба конкуренция за какой-либо вид корма и есть недостаточно используемая сумма других условий для некоего вида, входящего в аналогичные природные системы, но отсутствующего в рассматриваемой.

Особенно важно учитывать природные закономерности при попытках вмешаться в существующую (или сложившуюся в определенном месте) ситуацию с целью создания более благоприятных условий для человека. Так, биологами доказано следующее: в городах при повышении загрязненности территории пищевыми отходами возрастает численность ворон. При попытке улучшить ситуацию, например, путем их физического уничтожения население может столкнуться с тем, что экологическая ниша в городской среде, освобожденная воронами, будет быстро занята видом, имеющим близкую экологическую нишу, а именно – крысами. Такой результат вряд ли можно будет признать победой.

Каждый биологический вид играет определенную роль в своей экосистеме. Экологи доказали, что некоторые виды, называемые ключевыми видами , кардинально влияют на многие другие организмы в экосистеме. Исчезновение ключевого вида из экосистемы может спровоцировать целый каскад резких падений численности популяции и даже вымирание тех видов, которые зависели от него в той или иной форме.

Примером ключевого вида можно считать земляную черепаху. Земляная черепаха обитает на песчаных возвышенностях во Флориде и других южных районах США. Это медлительное, размером с обеденную тарелку, животное вырывает себе нору глубиной до 9 метров. В жарких, негостеприимных экосистемах юга США такие норы становятся убежищами от жары для почти 40 других видов животных, таких, как серая лиса, опоссум, змея индиго и многих насекомых. В тех местах, где земляная черепаха была истреблена или доведена до грани вымирания многочисленными охотниками за ее изысканным мясом, многие зависящие от черепахи виды перестали существовать.

Экологические ниши всех живых организмов делят на специализированные и общие. Это деление зависит от основных источников питания соответствующих видов, размеров местообитания, чувствительности к абиотическим факторам среды.

Специализированные ниши. Большинство видов растений и животных приспособлены к существованию лишь в узком диапазоне климатических условий и иных характеристик окружающей среды, питаются ограниченным набором растений или животных. Такие виды имеют специализированную нишу, определяющую их местообитание в природной среде.

Так, гигантская панда имеет узко специализированную нишу, ибо на 99% питается листьями и побегами бамбука. Массовое уничтожение некоторых видов бамбука в районах Китая, где обитала панда, привело это животное к вымиранию.

Разнообразие видов и форм растительного и животного мира, существующее во влажных тропических лесах, связано с наличием там ряда специализированных экологических ниш в каждом из чётко выраженных ярусов лесной растительности. Поэтому интенсивная вырубка этих лесов стала причиной вымирания миллионов специализированных видов растений и животных.

Общие ниши. Видам с общими нишами характерна легкая приспосабливаемость к изменениям экологических факторов среды обитания. Они могут успешно существовать в разнообразных местах, питаться различной пищей и выдерживают резкие колебания природных условий. Общие экологические ниши имеются у мух, тараканов, мышей, крыс, людей и т.д.

Для видов, имеющих общие экологические ниши, существует значительно меньшая угроза вымирания, чем для имеющих специализированные ниши.

Пока экосистема обладает достаточным количеством ресурсов общего пользования, разные виды потребляют их сообща. Однако если два или более видов в одной экосистеме начнут потреблять один и тот же дефицитный ресурс, они окажутся в отношениях межвидовой конкуренции.

Вид получает преимущество в межвидовой конкуренции, если для него характерны

Более интенсивное размножение;

Адаптация к более широкому диапазону температуры, освещенности, солености воды или

концентрации определенных вредных веществ;

Лишение конкурента доступа к ресурсу.

Способы снижения межвидовой конкуренции:

Переселение в другой район;

Переход на более труднодоступную или трудно усваиваемую пищу;

Смена времени и места добычи корма.

Наиболее характерной формой взаимодействия видов в пищевых цепях и сетях является хищничество, при котором отдельная особь одного вида (хищник) питается организмами (или частями организмов) другого вида (жертвы), причем хищник живет отдельно от жертвы. Эти два вида организмов вовлечены в отношения типа хищник – жертва.

Виды-жерты пользуются целым рядом защитных механизмов, чтобы не стать легкой добычей для хищников:

Умение быстро бегать или летать;

Обладание толстой кожей или панцирем;

Обладание защитной окраской или способом изменять цвет;

Умение выделять химические вещества с запахом или вкусом, отпугивающим хищника или даже отравляющим его.

У хищников тоже есть несколько способов добычи жертвы:

Умение быстро бегать (например, гепард);

Охота стаями (например, пятнистые гиены, львы, волки);

Отлов в качестве жертв преимущественно больных, раненых и прочих неполноценных особей;

Четвертый путь обеспечения себя животной пищей – это путь, по которому пошел человек разумный, путь изобретения орудий охоты и ловушек, а также одомашнивания животных.

Нередко случается, что два различных вида организмов непосредственно взаимодействуют таким образом, что приносят друг другу взаимную пользу. Такие взаимовыгодные межвидовые взаимодействия называются мутуализмом. Например, цветы и насекомые-опылители.

Комменсализм характеризуется тем, что один из двух видов извлекает из межвидового взаимодействия пользу, тогда как на другом это практически никак не отражается (ни положительно, ни отрицательно). Например, рачки в челюстях кита.

С понятием экологической ниши тесно связано представление о так называемых насыщенных и ненасыщенных биоценозах. Первые представляют собой экосистемы, в которых жизненные ресурсы на каждом этапе преобразования биомассы и энергии используются наиболее полно. Когда жизненные ресурсы утилизируются частично, биоценозы можно называть ненасыщенными. Для них характерно наличие свободных экологических ниш. Однако это в высшей степени условно, поскольку экологические ниши не могут существовать сами по себе, независимо от занимающих их видов.

Неиспользованные резервы, нереализованные возможности интенсификации потока веществ и энергии имеются практически в любом биогеоценозе (иначе не могло бы осуществляться их постоянное развитие во времени и пространстве!), все биоценозы условно можно считать ненасыщенными. Чем меньше насыщенность биоценоза, тем легче вводятся в его состав и удачнее акклиматизируются новые виды.

Очень важным свойством биогеоценозов, как биологических систем, является их саморегуляция – способность выдерживать высокие нагрузки неблагоприятных внешних воздействий, способность возвращаться в условно исходное состояние после существенных нарушений их структуры (принцип Ле-Шателье). Но выше определенного порога воздействия механизмы самовосстановления не срабатывают, и биогеоценоз необратимо разрушаются.

В ходе эволюционного процесса глобальная экологическая ниша биосферы расширялась. Когда какой-либо вид исчерпывал генетически обусловленный потенциал освоения экологической ниши, где он родился, то он либо вытеснял другие виды, завоевывая их экологические ниши, либо осваивал ранее безжизненную нишу, перестраиваясь под нее генетически, возможно порождая при этом новый вид организмов.

На каком-то этапе развития биосферы возник вид Человек Разумный, представителями которого является все человечество, несмотря на все разнообразие рас, народов, народностей, племен.

Потенциал развития взрослых особей каждого биологического вида по всем качествам особи генетически обусловлен, хотя он может и не раскрыться, не наполниться реальным содержанием, если условия среды обитания к этому не располагают. По отношению к популяции генетическая обусловленность и потенциал её освоения подчинены вероятностным предопределенностям, отраженным в статистических закономерностях свершившегося. Это в полной мере касается и человека - биологического вида, несущего наибольший абсолютный и относительный объем (по сравнению с другими видами живых организмов биосферы Земли) внегенетически обусловленной поведенческой информации, обеспечивающей наибольшую гибкость поведения в быстро меняющейся обстановке.



Конспект по экологии

Любой вид адаптирован к определённым условиям (факторам) окружающей среды. Выход параметров хотя бы одного из множества факторов за пределы толерантности организма вызывает его угнетение. Унаследованные от предков требования организма к составу и параметрам экологических факторов определяют границы распространения того вида, к которому этот организм принадлежит, т. е. ареал, а в пределах ареала – конкретные места обитания.

Иначе говоря, любой вид животного, растения, микроорганизма способен нормально обитать, питаться, размножаться только в том месте, где его "прописала" эволюция за многие тысячелетия, начиная с его предков. Для обозначения этого феномена биологами заимствован архитектурный термин "ниша". Таким образом каждый вид живого организма занимает в природе свою, только ему присущую экологическую нишу.

Экологическая ниша – это место организма в природе и весь образ его жизнедеятельности или, как говорят, жизненный статус, включающий отношения к факторам среды, видам пищи, времени и способам питания, местам размножения, укрытий и т.п. Это понятие значительно объёмнее и содержательнее понятия «местообитание».

Местообитание – это пространственно ограниченная совокупность условий абиотической и биотической среды, обеспечивающая весь цикл развития организма.

Американский эколог Ю. Одум образно местообитание назвал «адресом» организма, а экологическую нишу – его «профессией». На одном местообитании живёт, как правило, большое количество организмов разных видов. Например, смешанный лес – это местообитание для сотен видов организмов, но у каждого из них своя экологическая ниша. Экологическая ниша – функциональная роль вида в месте его «прописки». С одной стороны, организм участник общего потока жизни в среде обитания, а с другой – создатель такого потока. И это, действительно, очень похоже на профессию человека.

Прежде всего, экологическая ниша не может быть занята двумя или более видами, как не существует двух абсолютно одинаковых профессий. Вид занимает экологическую нишу, чтобы выполнить уникальную функцию только ему присущим способом, осваивая таким образом среду обитания и в то же время её формируя. Природа очень экономна – даже всего лишь два вида, занимающих одну и ту же экологическую нишу, не могут устойчиво сосуществовать, поскольку в результате конкуренции один из них будет вытеснен другим. Эта закономерность не без исключений, но она настолько объективна, что сформулирована в виде положения, которое получило название «принцип конкурентного исключения» (принцип Г.Ф. Гаузе): если два вида со сходными требованиями к среде (питанию, поведению, местам размножения и т.п.) вступают в конкурентные отношения, то один из них должен погибнуть либо изменить свой образ жизни и занять новую экологическую нишу . Иногда, например, чтобы снять острые конкурентные отношения, одному организму (животному) достаточно изменить время питания, не меняя самого вида пищи (если конкуренция возникает на почве пищевых отношений), или найти новое местообитание (если конкуренция имеет место на почве данного фактора) и т.п. Если организмы занимают разные экологические ниши, они обычно не вступают в конкурентные отношения, сферы их деятельности и влияния разделены. В таком случае отношения рассматриваются как нейтральные.

Экологическая ниша как функциональное место вида в системе жизни не может долго пустовать, – об этом говорит правило обязательного заполнения экологических ниш: пустующая экологическая ниша всегда бывает естественно заполнена .

Из других свойств экологических ниш отметим, что организм (вид) может их менять на протяжении своего жизненного цикла. Наиболее яркий пример в этом отношении – насекомые. Так, экологическая ниша личинок майского жука связана с почвой, питанием корневыми системами растений. В то же время экологическая ниша жуков связана с наземной средой, питанием зелеными частями растений.

Сообщества живых организмов формируются по принципу заполнения экологических ниш. В природном сформировавшемся сообществе обычно все ниши заняты. Именно в такие сообщества, например, в долгосуществующие (коренные) леса, очень мала вероятность внедрения новых видов. В то же время следует иметь в виду, что занятость экологических ниш в определенной мере понятие относительное. Все ниши обычно освоены теми организмами, которые характерны для данного региона. Но если организм приходит извне (например, заносятся семена) случайно или преднамеренно, то он может найти для себя свободную нишу в связи с тем, что на неё не было претендентов из набора существующих видов. В таком случае обычно неизбежно быстрое увеличение численности (вспышка) вида-пришельца, поскольку он находит крайне благоприятные условия (свободную нишу) и, в частности, не имеет врагов.

Экологическая ниша как функциональное место вида в среде обитания позволяет форме, способной выработать новые приспособления, заполнить эту нишу, однако иногда это требует значительного времени. Нередко кажущиеся специалисту пустующие экологические ниши – лишь обман. Поэтому человек должен быть предельно осторожен с выводами о возможности заполнения этих ниш путем акклиматизации. Акклиматизация – это комплекс мероприятий во вселению вида в новые места обитания, проводимый в целях обогащения естественных или искусственных сообществ полезными для человека организмами. Расцвет акклиматизации пришёлся на 20-40-е годы ХХ века. Однако по прошествии времени стало очевидно, что либо опыты были безуспешны, либо, что хуже, принесли весьма негативные плоды – виды делались вредителями, распространяли опасные заболевания и т.д. Иначе и не могло быть: помещённые в чужую среду с фактически занятой экологической нишей новые виды вытесняли тех, кто уже выполнял аналогичную работу. Новые виды не соответствовали нуждам экосистемы, иногда не имели врагов и поэтому могли бурно размножаться. Но затем вступали в дело ограничивающие факторы. Численность вида резко падала или он, наоборот, интенсивно размножался, как кролик в Австралии и становился вредителем.