Серводвигатели. Устройство, характеристики, типы и виды серводвигателей. Сравнение шаговых и серводвигателей

В данной статье рассматриваются сервоприводы: их устройство, предназначение, управление сервоприводом, подключение сервопривода, разновидности сервоприводов и их сравнение. Давайте приступим и начнём с того, что же такое сервопривод.

Понятие сервопривода

Под сервоприводом чаще всего понимают механизм с электромотором, который можно попросить повернуться в заданный угол и удерживать это положение. Однако, это не совсем полное определение.

Если сказать полнее, сервопривод - это привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервоприводом является любой тип механического привода, имеющий в составе датчик (положения, скорости, усилия и т.п.) и блок управления приводом, автоматически поддерживающий необходимые параметры на датчике и устройстве согласно заданному внешнему значению.

Иными словами:

    Сервопривод получает на вход значение управляющего параметра. Например, угол поворота

    Блок управления сравнивает это значение со значением на своём датчике

    На основе результата сравнения привод производит некоторое действие, например: поворот, ускорение или замедление так, чтобы значение с внутреннего датчика стало как можно ближе к значению внешнего управляющего параметра

Наиболее распространены сервоприводы, которые удерживают заданный угол и сервоприводы, поддерживающие заданную скорость вращения.

Типичный хобби-сервопривод изображён ниже.

Каким же образом устроены сервоприводы?

Устройство сервопривода

Сервоприводы имеют несколько составных частей.

Привод - электромотор с редуктором. Чтобы преобразовать электричество в механический поворот, необходим электромотор . Однако зачастую скорость вращения мотора бывает слишком большой для практического использования. Для понижения скорости используется редуктор : механизм из шестерней, передающий и преобразующий крутящий момент.

Включая и выключая электромотор, можно вращать выходной вал - конечную шестерню сервопривода, к которой можно прикрепить нечто, чем мы хотим управлять. Однако, для того чтобы положение контролировалось устройством, необходим датчик обратной связи - энкодер , который будет преобразовывать угол поворота обратно в электрический сигнал. Для этого часто используется потенциометр. При повороте бегунка потенциометра происходит изменение его сопротивления, пропорциональное углу поворота. Таким образом, с его помощью можно установить текущее положение механизма.

Кроме электромотора, редуктора и потенциометра в сервоприводе имеется электронная начинка, которая отвечает за приём внешнего параметра, считывание значений с потенциометра, их сравнение и включение/выключение мотора. Она-то и отвечает за поддержание отрицательной обратной связи.

К сервоприводу тянется три провода. Два из них отвечают за питание мотора, третий доставляет управляющий сигнал, который используется для выставления положения устройства.

Теперь давайте посмотрим, как управлять сервоприводом извне.

Управление сервоприводом. Интерфейс управляющих сигналов

Чтобы указать сервоприводу желаемое положение, по предназначенному для этого проводу необходимо посылать управляющий сигнал. Управляющий сигнал - импульсы постоянной частоты и переменной ширины.

То, какое положение должен занять сервопривод, зависит от длины импульсов. Когда сигнал поступает в управляющую схему, имеющийся в ней генератор импульсов производит свой импульс, длительность которого определяется через потенциометр. Другая часть схемы сравнивает длительность двух импульсов. Если длительность разная, включается электромотор. Направление вращения определяется тем, какой из импульсов короче. Если длины импульсов равны, электромотор останавливается.

Чаще всего в хобби-сервах импульсы производятся с частотой 50 Гц. Это значит, что импульс испускается и принимается раз в 20 мс. Обычно при этом длительность импульса в 1520 мкс означает, что сервопривод должен занять среднее положение. Увеличение или уменьшение длины импульса заставит сервопривод повернуться по часовой или против часовой стрелки соответственно. При этом существуют верхняя и нижняя границы длительности импульса. В библиотеке Servo для Arduino по умолчанию выставлены следующие значения длин импульса: 544 мкс - для 0° и 2400 мкс - для 180°.

Обратите внимание, что на вашем конкретном устройстве заводские настройки могут оказаться отличными от стандартных. Некоторые сервоприводы используют ширину импульса 760 мкс. Среднее положение при этом соответствует 760 мкс, аналогично тому, как в обычных сервоприводах среднему положению соответствует 1520 мкс.

Также стоит отметить, что это всего лишь общепринятые длины. Даже в рамках одной и той же модели сервопривода может существовать погрешность, допускаемая при производстве, которая приводит к тому, что рабочий диапазон длин импульсов немного отличается. Для точной работы каждый конкретный сервопривод должен быть откалиброван: путём экспериментов необходимо подобрать корректный диапазон, характерный именно для него.

На что ещё стоит обратить внимание, так это на путаницу в терминологии. Часто способ управления сервоприводами называют PWM/ШИМ (Pulse Width Modulation) или PPM (Pulse Position Modulation). Это не так, и использование этих способов может даже повредить привод. Корректный термин - PDM (Pulse Duration Modulation). В нём крайне важна длина импульсов и не так важна частота их появления. 50 Гц - это норма, но сервопривод будет работать корректно и при 40, и при 60 Гц. Единственное, что нужно при этом иметь в виду - это то, что при сильном уменьшении частоты он может работать рывками и на пониженной мощности, а при сильном завышении частоты (например, 100 Гц) может перегреться и выйти из строя.

Характеристики сервоприводов

Теперь давайте разберёмся, какие бывают сервоприводы и какими характеристиками они обладают.

Крутящий момент и скорость поворота

Сначала поговорим о двух очень важных характеристиках сервопривода: о крутящем моменте и о скорости поворота .

Момент силы, или крутящий момент - векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Проще говоря, эта характеристика показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.

Скорость сервопривода измеряется интервалом времени, который требуется рычагу сервопривода, чтобы повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё несложно вычислить скорость в более привычной величине, оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют такую единицу.

Стоит отметить, что иногда приходится искать компромисс между этими двумя характеристиками, так как если мы хотим надёжный, выдерживающий большой вес сервопривод, то мы должны быть готовы, что эта могучая установка будет медленно поворачиваться. А если мы хотим очень быстрый привод, то его будет относительно легко вывести из положения равновесия. При использовании одного и того же мотора баланс определяет конфигурация шестерней в редукторе.

Конечно, мы всегда можем взять установку, потребляющую большую мощность, главное, чтобы её характеристики удовлетворяли нашим потребностям.

Форм-фактор

Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов. Их можно разделить на:

    маленькие

    стандартные

Обладают они при этом следующими характерными габаритами:

Бывают ещё так называемые сервоприводы «специального вида» с габаритами, не попадающими в данную классификацию, однако процент таких сервоприводов весьма мал.

Внутренний интерфейс

Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?

Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.

Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс - минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.

Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка - все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.

Материалы шестерней

Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические. Все они широко используются, выбор зависит от конкретной задачи и от того, какие характеристики требуются в установке.

Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни - лучший выбор.

Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостатой - дороговизна.

Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана - фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. К сожалению, они обойдутся вам достаточно дорого.

Коллекторные и бесколлекторные моторы

Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.

Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.

Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором - самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.

Подключение к Arduino

Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:

    красный - питание; подключается к контакту 5V или напрямую к источнику питания

    коричневый или чёрный - земля

    жёлтый или белый - сигнал; подключается к цифровому выходу Arduino.

Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield . Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.

Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo .

Ограничение по питанию

Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.

Рассмотрим на примере подключения 12V сервопривода:

Ограничение по количеству подключаемых сервоприводов

На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.

Функционал библиотеки Servo

Библиотека Servo позволяет осуществлять программное управление сервоприводами. Для этого заводится переменная типа Servo . Управление осуществляется следующими функциями:

    attach() - присоединяет переменную к конкретному пину. Возможны два варианта синтаксиса для этой функции: servo.attach(pin) и servo.attach(pin, min, max) . При этом pin - номер пина, к которому присоединяют сервопривод, min и max - длины импульсов в микросекундах, отвечающих за углы поворота 0° и 180°. По умолчанию выставляются равными 544 мкс и 2400 мкс соответственно.

    write() - отдаёт команду сервоприводу принять некоторое значение параметра. Синтаксис следующий: servo.write(angle) , где angle - угол, на который должен повернуться сервопривод.

    writeMicroseconds() - отдаёт команду послать на сервоприводимульс определённой длины, является низкоуровневым аналогом предыдущей команды. Синтаксис следующий: servo.writeMicroseconds(uS) , где uS - длина импульса в микросекундах.

    read() - читает текущее значение угла, в котором находится сервопривод. Синтаксис следующий: servo.read() , возвращается целое значение от 0 до 180.

    attached() - проверка, была ли присоединена переменная к конкретному пину. Синтаксис следующий: servo.attached() , возвращается логическая истина, если переменная была присоединена к какому-либо пину, или ложь в обратном случае.

    detach() - производит действие, обратное действию attach() , то есть отсоединяет переменную от пина, к которому она была приписана. Синтаксис следующий: servo.detach() .

Все методы библиотеки Servo2 совпадают с методами Servo.

Пример использования библиотеки Servo

Вместо заключения

Сервоприводы бывают разные, одни получше - другие подешевле, одни надёжнее - другие точнее. И перед тем, как купить сервопривод, стоит иметь в виду, что он может не обладать лучшими характеристиками, главное, чтобы подходил для вашего проекта. Удачи в ваших начинаниях!

Асинхронные серводвигатели получили широкую известность за свою непритязательность к условиям работы и технологичность. Обладают небольшой массой, скромными габаритами и привлекательной себестоимостью, легки в обслуживании. Такое электрооборудование выгодно выделяется. В 90-е годы начинается активное применение синхронных сервомоторов, но и сейчас асинхронный серводвигатель сохраняет свою долю в массовом использовании, особенно в промышленности.
Более углубленное изучение нелинейных систем элементы которых перемещаются друг относительно друга было бы очень долгим. Токи, потокосцепления, напряжения представляют собой изменяемые векторные величины. Они называются частота, амплитуда и фаза. Всё это изучается в теории электрических машин.
Асинхронным двигателям свойственна значительная нелинейность. Магнитный поток и намагничивающий ток связаны между собой. Сопротивления роторной цепи определяются температурой и частотой.

Чтобы определить нагрузку асинхронного серводвигателя, требуется помимо сопротивлений схемы замещения ещё знать и другие переменные. Потребуются напряжения, частоты, скольжения.
Чтобы выполнять дальнейшие расчёты с изучением и прогнозированием режимов работы следует знать математические выражения зависимости скольжения и внутренних параметров, а также режимов его работы.
Для частотно-управляемого торможения тормозной режим работы так же важен как двигательный. Допускается применять механику, при этом частотное управление позволяет осуществлять торможение привода с помощью электричества, а это во многом выгоднее.
Асинхронный серводвигатель возможно применять в качестве двигателя, либо в трёх режимах торможения. Эти три режима различаются между собой тем как движутся потоки энергии. У них разное направление.
Режим двигателя предполагает передачу мощности от источника электроэнергии к валу двигателя. Магнитное поле при этом вращается и дублирует направление вала машины. Скорость вращения поля больше скорости вращения вала.
Чтобы управлять асинхронным серводвигателем, не производят регулировку напряжения статора, вместо этого, его(напряжение) меняют вместе с частотой напряжения, которое подаётся на статор. При этом основными параметрами являются U/F и U/(F в квадрате). В преобразователе частоты или сервоприводе выбирается вид характеристики по которой управляется серводвигатель.
Чтобы создать синусоидальный ток статор применяют скалярный и векторный способ формирования напряжения. Самым выгодным является векторный режим. Он даёт возможность получить увеличенную амплитуду входного напряжения, по сравнению со скалярным.
Управление напряжением статора ведёт больше не к регулированию крутящего момента, а скорее к изменению статического запаса крутящего момента.
Дополнительно планирую рассмотреть ремонт серводвигателей в домашних условиях и процесс работы в специализированных организациях.

Сейчас 43 гостей и ни одного зарегистрированного пользователя на сайте

В работе фрезеров используются два типа двигателя: шаговый – электромеханическое устройство, преобразующее сигналы в угловое перемещение ротора с фиксацией в заданном положении. И серводвигатели – имеющие обратную связь, и которыми можно управлять через цепь контроллера путём увеличения и уменьшения тока. Шаговые имеют меньшую мощность и скорость, и значительно дешевле серводвигателей.

Как правило, шаговый электродвигатель – это электромеханическое устройство, которое преобразует сигналы управления в угловое перемещение его ротора с качественной фиксацией в заданном положении. Сегодня современные шаговые двигатели (ШД), по сути, являются синхронными двигателями, не имеющими пусковую обмотку на роторе, что соответственно объясняется частотным пуском самого ШД. Последовательная активация обмоток двигателя порождает дискретные угловые перемещения (т. е. – шаги) ротора. Отличительная особенность этих двигателей – это возможность без датчика обратной связи осуществлять позиционирование по положению.

Шаговый двигатель относится к классу так называемых «бесколлекторных» двигателей постоянного тока. Такие двигатели как непосредственно и любые другие бесколлекторные электрические машины, имеют достаточно высокую надежность и весьма внушительный срок службы, что в свою очередь позволяет применять их в самых разных индустриальных сферах. Если сравнивать обычные электродвигатели постоянного тока с шаговыми двигателями, то последние требуют более сложных схем управления, выполняющие абсолютно все коммутации обмоток.

Сегодня существуют три основных типа/вида шаговых двигателей:

  1. Гибридные двигатели – наиболее часто используемые во фрезерных станках с числовым программным управлением.
  2. Двигатели с постоянными магнитами.
  3. Двигатели, имеющие переменное магнитное сопротивление.

Гибридные шаговые двигатели

Считается, что гибридные двигатели совмещают в себе наилучшие черты ШД с переменным магнитным сопротивлением, а также двигателей с постоянными магнитами. У гибридного двигателя ротор имеет зубцы, которые расположены в осевом направлении. Шаговые гибридные двигатели обеспечивают более меньшую величину шага, большую скорость и больший момент, чем двигатели других типов/видов. Обычно, число шагов для гибридных двигателей может составлять от 100 до 400 (при этом угол шага 3.6 – 0.9о).

Строение шаговых двигателей

Шаговый электрический двигатель состоит из статора, где расположены обмотки возбуждения (т. е. катушки электромагнитов) и соответственно ротора с постоянными магнитами (также используются роторы с переменным магнитным сопротивлением – но реже). ШД с магнитным ротором позволяют обеспечивать фиксацию ротора при обесточенных обмотках и получать больший крутящий момент. Именно благодаря этому, шаговые двигатели достаточно часто применяются в станках с ЧПУ.

Достаточно высокая температура, которая создана в катушках, способна легко рассеяться через массу самого двигателя, таким образом, шаговые электродвигатели от нагрева менее подвержены повреждениям.

Принципы работы шагового двигателя

Как правило, в соответствии с тем, какие именно катушки статора выключены или включены, ротор будет вращаться, чтобы так сказать «подстроиться» к магнитному полю. Например, если представить ШД с двумя катушками в статоре, а в качестве ротора постоянный магнит, то когда соответствующие катушки статора достаточно возбуждены, постоянно намагниченный ротор обязательно повернется, чтобы с магнитным полем статора «выстроиться» в линию. Ротор останется в данном положении, если поле соответственно не вращается.

Когда к этой катушке не будет поступать энергия, а будет направлена непосредственно к следующей катушке, то ротор снова повернется, чтобы подстроиться к полю новоиспеченной позиции. При этом абсолютно каждый поворот обязательно соответствует углу шага, который в свою очередь может измениться от 180о до доли градуса (т. е. до 60о). Затем, в то время когда вторая катушка выключена, включается следующая. Это заставит повернуться ротор на следующий шаг, причем в том же направлении. Данный процесс продолжается до тех пор, пока одна катушка включается, а соответственно другая выключается.

Последовательность шести шагов возвратит ротор в то же состояние, какое было в самом начале последовательности. Теперь если представить, что при завершении первого шага, вместо включения одной катушки и выключения второй – обе катушки были бы включены. В таком случае, ротор повернется только лишь на 30о (т. е. всего на половину от 60о), чтобы выровняться в направлении наименьшего сопротивления. Таким образом, если первая катушка включена, в то время когда вторая выключена, ротор должен повернуться еще на 30о. Называется это действием полушага, что непосредственно включает последовательность восьми движений.

Во время противоположной последовательности выключений/включений, ротор будет совершать обороты в противоположном направлении. В промышленности наиболее применим именно шаговый мотор, который продвигается на угол от 1.8о и до 7.5,о при полном шаге. Для того чтобы размер шагов уменьшить, число полюсов необходимо увеличить. Однако при этом есть физический предел, сколько непосредственно полюсов могут использоваться.

Чтобы снизить дискретность перемещения ротора ШД применяется, как правило – микрошаговый режим. Непосредственно сам микрошаг реализуется при автономном управлении током обмоток шагового двигателя. Управляя соотношением токов находящихся в обмотках, ротор можно зафиксировать между шагами в промежуточном положении. Таким образом, можно увеличить плавность вращения ротора, а также достичь высокой точности позиционирования. Кроме того, в микрошаговом режиме разрешающую способность можно получить в 51200 шаг/об, что положительно отразиться на работе оборудования в целом.

Механическая характеристика шагового двигателя

Очень важной особенностью ШД является, конечно же, их механическая характеристика.

Управление шаговым приводом

Управление шаговым двигателем в самом общем виде сводится к задаче отработать обусловленное число шагов в потребном направлении и с необходимой скоростью.

На блок управления шагового двигателя (т. е. драйвер) подаются определенные сигналы «сделать шаг» - «задать направление». Эти сигналы представляют собой ничто иное как – импульсы 5В.

Данные импульсы можно получить непосредственно от компьютера, к примеру, от LPT-порта, от специализированного контроллера управления шаговыми приводами или же задавать сигналы независимо от генератора 5В или источника питания.

Как правило, работой ШД управляет электронная схема, а его питание выполняется от источника постоянного тока. ШД используют для управления частотой вращения, чтобы не применять дорой контур обратной связи. Данный привод применяется в приводе исключительно с разомкнутой цепью.

Серводвигатели

Серводвигатель – это непосредственно двигатель с обратной связью, которой можно управлять, чтобы или достичь требуемой скорости (следовательно, крутящего момента) или же получить необходимый угол поворота. Именно для этой цели устройство обратной связи посылает определенные сигналы в цепь контроллера серводвигателя, сообщая о скорости и соответственно угловом положении. Если в результате наиболее высоких нагрузок скорость окажется гораздо, ниже требуемой величины, то ток будет увеличиваться покуда скорость не достигнет потребной величины. Когда сигнал скорости показывает, что она больше, чем необходимо, то ток соответственно, уменьшается. Если же по положению применена обратная связь, то сигнал о нем используется, чтобы остановить двигатель в тот момент, когда непосредственно ротор приблизится к необходимому угловому положению.

Для этого могут использоваться разные типы/виды датчиков, включая кодирующие устройства, например, такие как: потенциометры, тахометры и резольверы. Если применяется датчик положения типа кодирующего устройства или потенциометра, его сигнал вполне может быть дифференцирован для того, чтобы выработать определенный сигнал о скорости.

На сегодняшний день сервоприводы используются в высокопроизводительном оборудовании, к примеру, в таких производственных отраслях как: изготовление различных стройматериалов, напитков, упаковки, в полиграфии и подъемно-транспортной технике. Также в последнее время наблюдается тенденция к умножению доли сервоприводов в пищевой промышленности и деревообработке.

Решающим фактором использования сервоприводов является не только высокая их динамика, но и возможность получить высокостабильное или точное управление, широкий диапазон регулирования скорости, малые габариты и вес, а также помехоустойчивость.

Принципы работы серводвигателя

Серводвигатели функционируют вместе с устройствами, которые называются преобразователи (приводы или драйвера серводвигателей). Данные преобразователи меняют напряжение на обмотке возбуждения (или на якоре) сервомотора в зависимости от непосредственной величины напряжения на входе самого двигателя. Вся эта система, как правило, управляется стойкой ЧПУ (СNC). Далее схематично представлена система с сервомотором. Непосредственно под «усилителем» понимается драйвер серводвигателя.

К примеру, в программе, которая заложена в стойке ЧПУ, присутствует особая команда «на расстояние в 10 мм - переместиться по оси Y». На вход драйвера сервомотора со стойки ЧПУ подается определенное напряжение. Серводвигатель начинает вращать ходовой винт, соединенный с энкодером и порталом станка (т. е. перемещаемая часть со шпинделем). При вращении ходового винта энкодер вырабатывает определенные импульсы, которые подсчитывает стойка.

Математическое обеспечение стойки ЧПУ, как правило, устроено таким образом, что стойка «располагает сведениями», что: расстоянию в 10 мм соответствует, к примеру, 10 000 импульсов от энкодера. Следовательно, пока стойка станка не примет эти 10 000 импульсов, то на вход драйвера будет передаваться напряжение задания, то есть будет вырабатываться – рассогласование. Когда портал станка пройдет заданные 10 мм, стойка станка свои 10000 импульсов получает в полном объеме, поэтому напряжение на входе драйвера серводвигателя станет равным (0) «нулю», двигатель остановится, и станок отлично отработает строго 10 мм (причем при абсолютном отсутствии люфтов).

Если под каким-либо воздействием произойдет смещение портала станка – энкодер сразу выдаст импульсы. Данные импульсы будут сосчитаны стойкой, а затем она выдаст напряжение рассогласования непосредственно на драйвер, который повернет якорь двигателя на очень малый угол, чтобы рассогласование равнялось нулю. Таким образом, портал станка отлично удерживается возле заданной ему точки с достаточно высокой точностью.

Также нужно заметить, что далеко не каждый двигатель может поворачиваться на очень малые углы, обеспечивать нужный крутящий момент, динамику разгона и т. д. Это основная причина из-за чего сервоприводы относятся к дорогостоящим устройствам.

Синхронные серводвигатели

Синхронные серводвигатели – трехфазные синхронные электродвигатели с датчиком положения ротора, (т. е. AC-двигатели) и возбуждением от постоянных магнитов. Основным их достоинством является достаточно низкий момент инерции ротора по отношению к крутящему моменту, что в свою очередь позволяет реализовать высокое быстродействие. Всего лишь за десятки миллисекунд достигается разгон на номинальную частоту вращения и реверс с полной скоростью в пределах 1-го оборота вала двигателя.

Как правило, основная область применения данных двигателей является приводы подач станков, а также технологические установки с временным циклом менее 1 секунды (к примеру, быстродействующие позиционные системы самодействующих складов, производство упаковки).

Для сервоприводов характерны такие показатели как:

  • управление по моменту, по скорости или по позиции;
  • статическая точность поддержания скорости непосредственно по валу двигателя не более чем 0,01%;
  • диапазон регулирования скорости более чем в 1:1000;
  • точность поддержания позиции по валу двигателя менее ± 10;
  • компактные размеры и низкий вес:

1 - разъем для подключений;
2 - статор с обмоткой;
3 - датчик скорости и положения;
4 - ротор с магнитами;
5 - электромагнитный тормоз.

  • отсутствие и бесконтактность узлов, требующих обслуживания;
  • достаточно высокое быстродействие;
  • значительная перегрузочная способность по моменту (т. е. кратность предельного момента кратковременно может превысить 3);
  • практически неограниченный диапазон (1:10 000 и более) для регулирования частоты вращения;
  • показатели кпд вентильных двигателей, как правило, превышают 90%, при изменении мощности нагрузки двигателя, при колебаниях напряжения питающей электросети меняются очень несущественно, в отличие от асинхронных электродвигателей, где максимальный кпд не превышает и 86%, а также, напрямую зависит от изменений нагрузки;
  • достаточно низкий перегрев вентильного электродвигателя, потому как на роторе двигателя отсутствует обмотка, что существенно увеличивает его срок службы, работающего в режиме учащенных перегрузок;
  • довольно-таки большая плотность момента на одну единицу массы электродвигателя.

Шаговые двигатели или серводвигатели: выбор двигателей для фрезерно-гравировального станка

Прежде всего, нужно сравнить два вида этих моторов по некоторым параметрам:

Срок службы и обслуживания

Шаговые двигатели – бесщеточные, поэтому единственными изнашиваемыми деталями в конструкции являются подшипники (изначально очень надежная конструкция). Это позволяет считать их двигателями высокой надежности и не требующих обслуживания долгий срок.

Дешевые модели сервоприводов коллекторного типа (со щетками) менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.

Большинство современных бесколлекторных сервоприводов от известных японских производителей отличаются высокой надежностью (близкой к надежности шаговых двигателей).

Порча подшипников происходит очень редко. Может сгореть обмотка статора. Дешевле купить новый двигатель.

Ремонтопригодны только самые дорогие модели. Проще двигатель сразу менять.

Точность перемещений

При хорошей механике точность не ниже +/- 0.01 мм

У высококачественных сервоприводов точность не ниже +/- 0.002 мкм. Такая точность достижима в случае использования сервоприводов контурного управления (точно обрабатывающих заданную траекторию). Нельзя использовать сервопривода для позиционного управления, так как они иногда дают погрешность значительно превышающую, погрешность в шаговых двигателях!

Скорость перемещения, мощность

В гравировально-фрезерных станках используя шаговые двигатели можно добиться скорости 20 – 25 метров в минуту. При увеличении скорости шаговые двигатели сильно теряют в крутящем моменте.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин и более.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Эффект потери шагов при повышении скорости и нагрузки

На скоростях выше номинальных и повышенных нагрузках начинает проявляться эффект потери шагов (смотрите выше график возможной нагрузки от скорости вращения двигателя – механическую характеристику). Потеря шагов возможна также в случае каких либо внешних воздействий: ударов, вибраций, резонансов и т.п.

Современные системы управления шаговыми двигателями позволяют избавиться от этого общего недостатка шаговых двигателей.

Так как сервосистема – это система с обратной связью: в сервомоторе имеется датчик положения, по которому (в случае несоответствия) делается коррекция - то эффекта потери шагов в ней нет.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Ценовой критерий

Шаговые двигатели значительно дешевле серводвигателей, особенно шаговые двигатели китайского производства.

Чисто конструктивно (датчик положение, более сложный, чем у шагового двигателя, драйвер) серводвигатели дороже шаговых. К тому же, я не встречал в своей практике дешевых китайских серводвигателей.

Шаговый двигатель и сервопривод абсолютно не являются конкурентами, так как каждый занимает исключительно свою предопределенную нишу.

Сравнение работы простого Серво и Шагового двигателей:

Для понимания различия между обычным шаговым и серво двигателем давайте рассмотрим работу системы именно с шаговым мотором, на котором непосредственно стоит энкодер (шаговый серводвигатель).

Контроллер выдал команду на какое-то количество шагов – повернуть вал. В обычном шаговом двигателе контроллер не в курсе, насколько конкретно шагов повернулся вал (т. к. у него отсутствует обратная связь). Просто он «считает», что вал повернулся правильно. А ведь бывает, что двигатель не смог повернуть вал или силы не хватило или по другой какой-либо причине. Хотя при этом контроллер четко отсчитал импульсы. Это и есть так называемый пропуск шагов в шаговом двигателе.

В серводвигателе же подобная проблема полностью отсутствует. Контроллер дал команду вал повернуть настолько-то импульсов и ожидает покуда с энкодера придет сигнал, который подтвердит, что вал повернулся на необходимое число импульсов. При этом если с энкодера поступил, хотя бы на 1 импульс меньше, контроллер все равно будет продолжать подавать команду, пока с энкодера не поступит последний импульс, который выровняет соотношение истинного и заданного количества импульсов. Либо же по истечении заданного периода времени, контроллер выдаст специальный сигнал «Ошибка перемещения».

В сервоприводе удержание осуществляется исключительно за счет тока, протекающего непосредственно через обмотку двигателя. При этом в момент удержания половины периода ток поступает в одном направлении, а вторую половину оставшегося времени в ином направлении. Именно за счет этого происходит удержание якоря. В это время по импульсам с энкодера подходит проверка, якорь на месте (на выходе нет ни одного импульса) или же сдвинулся (на выходе энкодера, как правило, появится импульс, вернее код).

Преимущества шагового двигателя:

Шаговые двигатели существенно дешевле, нежели серводвигатели.
- Простота конструкции, а значит и простота ремонта.
- Простота системы управления (подходят практически все программы написанные для CNC станков).

Преимущества серводвигателя:

Бесшумность и плавность работы в некоторых случаях делают сервоприводы единственным возможным вариантом для работы.
- Надежность и безотказность: возможность применения в ответственных устройствах.
- Высокая точность и скорость перемещений доступны также и на низких скоростях.- Способность двигателя может выбираться пользователем непосредственно от того какую конкретно задачу необходимо выполнить.

Выводы:

Ограничением в использовании шаговых двигателей являются мощность и соответственно скорость, однако по практике, их применение целиком оправданно в недорогих станках имеющих систему ЧПУ, предназначенных для обработки дерева, ДСП, МДФ, пластиков, легких металлов и прочих материалов средней скорости, необходимости производителей станков с ЧПУ по точности и по скорости. Если по каким-либо причинам такие параметры не устраивают, то, как правило, используют сервоприводы. Но стоит заметить, что при этом резко и, причем значительно поднимается стоимость конструкции в целом.

Если смотреть с другой стороны, то достичь реальной экономии времени обработки и даже при скоростных сервоприводах, можно за счет экономии на переходах и соответственно оптимизации путей обработки. В остальное же время, скорость весьма ограничена – режимами резки. Между деталью и приводом есть еще и фреза о чем часто забывают.

Достоинства сервопривода таковы, что использовать их можно было бы постоянно, когда только возможно, конечно если бы не два существенных недостатка: цена самого комплекта (т. е. блок управления + сервомотор) и сложность настройки, которая временами делает применение сервопривода совершенно – необоснованным.

В каких случаях необходимы сервоприводы:

  • При скоростных раскроях материала «листового» (скорость перемещения инструмента более чем 25 метров в минуту). Следовательно, в таком случае целесообразно приобретать именно «раскроечный» станок с достаточно мощным шпинделем (до 5 кВт) и с цангой под большой инструмент, с вакуумным столом, с системой удаления стружки и, конечно же, с сервоприводами.
  • При производстве матриц и форм с претензионной точностью изготовления. В данном случае больше всего подходит фрезерный обрабатывающий центр, который можно заказать у компании INTERLASER.

В остальных же случаях наиболее чаще приобретают машины именно с шаговыми двигателями – просто это наиболее практичнее.

Новости

Внимание! Новинка! Высокоточный лазерный станок CCD IL-6090 SGC (с камерой), оснащенный усовершенствованной системой оптического распознавания объектов. Благодаря современному программному обеспечению и высококачественным комплектующим, станок способен самостоятельно распознавать и сканировать необходимые объекты из множества представленных, после чего вырезать их в заданных границах по необходимым параметрам.

Добрый день! Компания INTERLASER, сообщает Вам о огромном поступлении линз, зеркал для лазерного оборудованияЦены самые низкие на линзы и зеркала:Линзы для лазерных станков ZnSe (США):диаметр 20, фокус 2 (50.8 мм) - 3 304 рубдиаметр 20, фокус 5 (12.7 мм) - 3 304 рубдиаметр 25, фокус 2.5 (63.5 мм) - 7 350 руб Линзы для лазеров ZnSe (Китай):диаметр 20, фокус 2 (50.8 мм) - 2 450 рубдиаметр 20, фокус 5 (127 мм) - 2 450 рубдиаметр 25, фокус 2.5 (63.5 мм) - 4 900 руб Зеркала:диаметр 20 мм, толщина 2/3 мм - 840 рубдиаметр 25 мм, толщина 2/3 мм - 980 рубдиаметр 30...

Что такое шаговый электродвигатель и принцип его работы:

Шаговый электродвигатель - это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Шаговые двигатели можно отнести к группе бесколлекторных двигателей постоянного тока. Шаговые двигатели, имеют высокую надежность и большой срок службы, что позволяет использовать их в индустриальных применениях. При увеличении скорости двигателя, уменьшается вращающийся момент.
Шаговые двигатели делают больше вибрации, чем другие типы двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. За счет этого шаговый двигатель во время работы очень шумный. Вибрация может быть очень сильная, что может привести двигатель к потери момента. Это связано с тем, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.
Типы:
Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники - единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Недостатки шагового двигателя:

  • Постоянное потребление энергии, даже при уменьшении нагрузки и без нагрузки
  • У шагового двигателя существует резонанс
  • Из-за того что нет обратной связи, можно потерять положение движения.
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность

Применение.
Шаговые двигателя имеет большую область применения в машиностроении, станках ЧПУ, компьютерной технике, банковских аппаратах, промышленном оборудовании, производственных линиях, медицинском оборудовании и т.д.

Что такое серво двигатель и принцип его работы:

Серводвигателя делятся на категории щеточные (коллекторные) и без щеточные (без коллекторные) . Щеточные (коллекторные) серводвигатели могут быть постоянного тока, без коллекторные серводвигатели могут быть постоянного и переменного тока. Серводвигатели с щетками (коллекторные), имеют один недостаток каждые 5000 часов необходима замена щеток. На серводвигателях всегда есть обратная связь, это может быть энкодер или резольвером. Обратная связь необходима, чтобы достичь необходимой скорости, либо получить нужный угол поворота. В случаях высоких нагрузок и если скорость окажется ниже требуемой величины, ток пойдет на увеличение, пока скорость не достигнет нужной величины, если сигнал скорости покажет, что скорость больше, чем нужно, ток, пойдет на уменьшение. При использовании обратной связи по положению, сигнал о положении можно использовать чтобы остановить двигатель, после того, как ротор двигателя приблизится к нужному угловому положению.
АС серводвигатель - двигатель переменного тока. В ценообразовании двигатель переменного тока дешевле двигателя постоянного тока. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели и коллекторные.
В синхронных двигателях переменного тока ротор и магнитное поле вращается синхронно с одинаковой скоростью и в одном направлении с статором, а в асинхронных двигателях переменного тока ротор вращается несинхронно по отношению с магнитным полем. В асинхронном двигателе из-за отсутствия коллектора (щетки) регулировка оборотов происходит за счет изменения частоты и напряжения.

DC серводвигател ь - двигатель постоянного тока.
Серводвигатели постоянного тока из за своих динамических качеств могут быть использованы приводом непрерывного действия. Серводвигатели постоянного тока могут постоянно работать в режимах старт, остановка и работать в обоих направлениях вращения. Обороты и развиваемый крутящий момент можно изменять путем изменения величины напряжения тока питания или импульсами.

Преимущества серводвигателей:

  • При малых размерах двигателя можно получить высокую мощность
  • Большой диапазон мощностей
  • Отслеживается положение, за счет использования обратной связи
  • Высокий крутящий момент по отношении к инерции
  • Возможность быстрого разгона и торможения
  • При высокой скорости, высокий крутящий момент
  • Допустимый предел шума при высоких скоростях
  • Полное отсутствия резонанса и вибрации
  • Точность позиционирования
  • Широкий диапазон регулирования скорости.
  • Точность поддержания скорости и стабильность вращающего момента.
  • Высокий статический момент Мо при нулевой скорости вращения.
  • Высокая перегрузочная способность: Mmax до 3.5Mo, Imax до 4Io
  • Малое время разгона и торможения, высокое ускорение (обычно > 5 м/с 2).
  • Малый момент инерции двигателя, низкий вес, компактные размеры.

Пример работы двигателя:
На данном примере я перескажу вам принцип работы серводвигателя. После того, как вы сгенерировали управляющую программу, она создается в системе G-кодов, то есть ваша линия, окружность или любой созданный вами объект конвертируется в перемещение по координатам X,Y, Z на определённое расстояние. За расстояние отвечают импульсы, которые подаются через блок управления на двигатель. При перемещении любой из осей, например на 100 мм, драйвер (блок управления) подает определённое напряжение на двигатель, вал двигателя (ротор). Вал двигателя соединен с ходовым винтом (ШВП), вращение оборотов двигателя отслеживается энкодер. При вращении ходового винта по любой из осей, потому что при использовании серво, энкодеры (обратная связь) устанавливаются на тех осях, где вы хотите определить положение, на энкодер подаются импульсы, которые считываются системой управления ЧПУ. Системы ЧПУ программируются так, что ни понимают что, например, для перемещения на 100 мм необходимо получить определенное количество импульсов. Пока система ЧПУ не получит нужное количество импульсов на вход драйвера (блока управления) будет подаваться напряжение задания (рассогласование). Когда портал станка проедет заданные 100 мм, система ЧПУ получит нужное количество импульсов и напряжение на входе драйвера упадет до 0 и двигатель остановится. Прошу вас заметить, что преимущество обратной связи в том, что если по какое то либо причине произойдет смещение портала станка, энкодер отправит на систему управления нужное количество импульсов, для подачи нужного напряжения на согласования драйвера (блока управления), и двигатель поменяет угол. Для того что разногласие было равно 0, это помогает удерживать станок в заданной точке с высокой точностью. Не все типы двигателей способны, обеспечивать динамику разгона, нужный крутящий момент и т. п.

Сравнительная характеристика по основным параметрам

Шаговые двигатели Серво двигателя

Срок эксплуатации и обслуживание

Шаговые двигатели – нет щеток, это увеличивает срок эксплуатации до многих лет, единственным слабым местом являются подшипники, могут работать в большом диапазоне высоких температур. Срок эксплуатации в разы дольше любого типа двигателя.

Из всех видов серво двигателей, самые дешевые это двигателя коллекторного типа (со щетками), они менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.
Другой тип бесколлекторных сервоприводов производятся по надежности как и шаговые двигателя, отсутствие щеток увеличивает срок эксплуатации, но не уменьшает стоимость ремонта. В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Очень тяжело повредить и износить подшипник. Как и в любом двигателе возможно повреждение обмотки двигателя. Из низкой цены проще купить новый шаговый двигатель.

В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Точность перемещений

При использование точных механизмов, может быть не ниже +/- 0.01 мм

сервоприводы имеют высокую динамическую точность до 1-2мкм и выше (1 мкм = 0.001 мм)

Скорость перемещения

В лазерно гравировальных станках скорость 20 – 25 метров в минуту. Если мы говорим о фрезерных станках ЧПУ с тяжелыми порталами и балками. Максимальная скорость перемещения до 9 м/мин.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин при использование высокосортной механике.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Потеря шагов при повышении скорости и нагрузки

При высоких скоростях и высоких нагрузках происходит потеря шагов. Эта не проблема возможна при воздействии внешних факторов: ударов, вибраций, резонансов и т.п.

У серво двигателей присутствует обратная связь, что полностью исключает потерю шагов.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Разница в цене

По цене шаговый двигатель намного дешевле своего товарища серво двигателя.

Минимум в 1,5 раз дороже шагового двигателя.

Каждый тип двигателя предназначен для своей задачи. В некоторых случаях нужно использовать шаговых двигатель, а для некоторых задач необходимо использовать только серво двигатель. В фрезерных станках ЧПУ широко используются оба типа двигателей, просто у каждого из них есть свои задачи, и иногда не целесообразно переплачивать за серво, при небольших объемах производства.

Подведем черту сравнения серводвигателей и шаговых двигателей:

Как и было сказано раньше, шаговый двигатель не может вам дать высокую скорость и мощность и поэтому одно из его применений - в станках ЧПУ недорого сегмента, например фрезерных деревообрабатывающих станках с ЧПУ «АртМастер» 2112, 2515, 3015 базовой комплектации. Данный вид станков на средней скорости покроет большой ассортимент работ: обработки дерева, пластика, ДСП, МДФ, легких металлов и других материалов.

Если же вас не устраивают скоростные характеристики, Вам необходимо рассмотреть фрезерные деревообрабатывающие станки с ЧПУ «АртМастер» 2112, 2515, 3015(авт.) и высокоскоростной фрезерный деревообрабатывающий станок «АртМастер 3015 Racer» .

Вы всегда должны для себя понимать, что сервомоторы позволяют вам с экономить время на холостых переходах, при этом вы не должны забывать правильно оптимизировать количество проходов. Скорость фрезеровки всегда зависит от мощности режущего инструмента (электрошпинделя) и типа фрезы. Мы не сможете получить хорошую скорость фрезеровки при низком качестве инструмента. Вы получите либо брак в изделии, либо Вам потребуется постоянная замена режущего инструмента. То есть при использовании высоких скоростей, при обработке материала вы не должны забывать о качестве и типе

Сервопривод (лат.servus - слуга, помощник; следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.

Сервопривод чаще всего встречается в робототехнике. Без него невозможно обойтись, особенно когда речь идет о решении задачи точного перемещения грузов или предметов. Такая задача возникает при выполнении какой-либо механической работы (покраска, сварка, шлифовка, перемещение изделий на конвейере и т. д.). Выполняют такую работу манипуляторы, которые выглядят как механические руки. Собственно говоря, знаменитая промышленная робототехника, которая используется для автоматизации производства по всему миру, представлена прежде всего манипуляторами. И не один такой манипулятор не обходится без сервоприводов, которые приводят в действие его звенья. Почему?

Все дело в свойствах сервопривода. Сервопривод — это привод, в котором используется отрицательная обратная связь, позволяющая точно управлять параметрами движения исполнительного(выходного) звена привода (чаще всего это выходной вал). Для создания такой обратной связи обычно используется датчик положения выходного звена сервопривода, но могут применяться и датчики скорости, усилия и т. д. Получается, что сервопривод — это привод, на который подается сигнал, указывающий выдвинуться или повернуться в определенное положение. Он в это положение устанавливается и «ждет», пока не поступит команда об изменении положения. Например, подается сигнал об установке вала в угловое положение 90 градусов. Вал поворачивается в это положение и держит его, пока не придет сигнал о новом положении. Такие возможности управления серьезно отличают сервопривод от обычного мотор-редуктора, который способен только непрерывно вращаться, пока на него подано напряжение. В результате, если такими приводами оснащен робот, то он может двигаться подобно руке человека и выполнять всю ту работу, которую можем выполнять мы.

Разновидностей сервоприводов в промышленности многоВ этой статье мы будем рассматривать электрические сервоприводы вращательного действия. Проще говоря, у таких сервоприводов выходным исполнительным звеном является вращающийся вал. Для простоты мы рассмотрим устройство хобби-сервопривода SG-90 (рис. 1), который активно применяется для создания учебных моделей роботов и прочих плавающих, летающих или ходящих механизмов. Хобби-сервопривод в отличие от промышленного существенно меньше по размерам, развивает меньшее усилие, по-другому управляется, но по общему принципу действия абсолютно идентичен промышленному собрату.

Рисунок 1

Устройство хобби-сервопривода показано на рисунке 2. В его состав входит электродвигатель, редуктор с набором шестеренок, потенциометр (выполняет функцию датчика положения для обратной связи), электронная плата управления электродвигателем и корпус, в который заключено все содержимое. На этом же рисунке показан провод, посредством которого сервопривод питается и управляется. Он состоит из 3-х жил: питание «плюс», питание «минус» и провод, на который подается управляющий сигнал. На разных моделях хобби-сервоприводов провода могут иметь разный цвет. Но практически всегда провод питания «плюс» окрашен в красный цвет, а провод питания «минус» - в черный. В отношении же сигнального провода (для передачи управляющего сигнала) четких цветовых стандартов нет. У разных производителей сервоприводов сигнальный провод может быть белым, оранжевым или желтым.

Рисунок 2

Для управления такими двигателями принят стандарт управляющего сигнала. Он представляет собой постоянно повторяющиеся импульсы или, как мы говорим, череду импульсов (Рис. 3). Частота этих импульсов все время остается постоянной и составляет 50 Гц. Получается, что временной период импульсов (время между передними фронтами соседних импульсов) составляет 1с/50 = 0,02 секунды, т. е. 20 миллисекунд.

Рисунок 3

Что интересно, угловое положение выходного вала сервопривода задается продолжительностью подаваемого импульса. Для пояснения на рисунке 4 показано приблизительное соотношение ширины импульса во временных координатах и угла поворота вала сервопривода. Управление поворотом вала сервопривода выполняется с помощью импульсов продолжительностью от 1 до 2 мс (миллисекунд).

Рисунок 4

Как видно из графика, для управления сервоприводом используется не что иное как сигнал с широтно импульсной модуляцией - ШИМ. Что такое ШИМ можно узнать из соответствующей статьи на нашем сайте.

А как ширина импульса превращается в угол вала на выходе?

Как указано на рисунке 2, в корпусе сервопривода присутствует еще и электронный модуль управления мотором. Подаваемый на сервопривод сигнал попадает на эту плату. А вот то, что происходит с этим сигналом дальше, показано на блок-схеме рисунок 5, которую мы проанализируем поэтапно. Каждый этап изображен прямоугольником или кружочком и пронумерован. Внутри этих прямоугольников изображены устройства, на которых происходит преобразование или обработка сигнала.

Рисунок 5

Итак, входной управляющие сигнал Sупр с ШИМ модуляцией приходит на специальную микросхему с логическими элементами, с помощью которой преобразуется в напряжение Uупр (этап №1). После этого сигнал Uупр (управляющее напряжение) поступает на элемент сравнения напряжений. Данный элемент называется сумматором, но на самом деле он из входного сигнала Uупр вычитает напряжение Uобр (напряжение обратной связи), приходящее через обратную связь с переменного резистора (этап №2).

Получившаяся разница Uкорр (корректирующее напряжение) усиливается встроенным усилителем (этап №3) и подается на электродвигатель. Мотор вращается (этап №4) и приводит в движение выходной вал сервопривода, а вместе с ним и датчик обратной связи в виде потенциометра. При вращении ручки потенциометра изменяется напряжение и получается, что поворот вала преобразуется в напряжение Uобр (этап №5). Это напряжение Uобр сравнивается (снова этап №2) с напряжением Uупр, и разница в виде Uкорр снова идет на усилитель (этап №3) и так далее. Сигнал «ходит» по цепи с обратной связью до тех пор, пока не выполнится соотношение Uупр = Uобр. Тогда Uкорр станет равно 0, и двигатель остановится. Произойдет это тогда, когда вал сервопривода займет положение, соответствующее входному управляющему сигналу Sупр.

Обобщим все сказанное. Вал сервопривода механически соединен с ручкой потенциометра. Из-за этого вместе с поворотом вала сервопривода поворачивается потенциометр, в результате чего изменяется его сопротивление и выходное напряжение Uобр. Соответственно, выходное напряжение с потенциометра Uобр прямо зависит от угла поворота сервопривода. Одновременно входной в сервопривод сигнал Sупр с продолжительностью импульсов от 0,001 до 0,002 секунды задает уровень напряжения Uупр, которое определяет угол на который должен повернуться вал сервопривода. Остановка электродвигателя в момент, когда вал сервопривода именно в нужном положении, достигается за счет вычитания из сигнала Uупр сигнала обратной связи Uобр. А усилитель этапа №3 необходим для того, чтобы на электродвигатель подавалось усиленное напряжение и двигатель переводил вал сервопривода в заданное положение максимально быстро.

Примеры управления серводвигателем

Как было сказано выше, для управления серводвигателем приминяется ШИМ с определенными параметрами. Сгенерировать такую ШИМ можно различными способами. Покажем некоторые из них.

1. Управление серводвигателем при помощи 555 таймера . Микросхема таймера 555 может работать в режиме генератора импульсов (подробнее об этой микросхеме читайте соответствующую статью). Следовательно можно подобрать такие параметры работы этой микросхемы, что бы она выдавала нужные нам импульсы. Путем изменения скважности этих импульсов, т. е. изменения продолжительности импульсов от 0,001 до 0,002 секунды, мы и будем задавать угол поворота вала сервопривода.

Для того чтобы реализовать ШИМ сигнал, необходимо использовать схему с регулируемой скважностью импульсов при неизменной частоте 50 Гц. Параметры компонентов на схеме (рис.6) подобраны таким образом, чтобы обеспечить эти условия. Но чтобы сигнал управления удовлетворял всем условиям, его необходимо инвертировать. Транзистор в схеме необходим именно для этого. Чтобы управлять скважностью в заданных пределах, потребовался бы потенциометр на максимальное сопротивление 20 кОм. Мы будем использовать два потенциометра по 10 кОм (так как именно такие потенциометры используются в Основном наборе 1-ого уровня Эвольвектор , где эта схема подробно описана. Рабочий ход серводвигателя составляет 180 градусов. В этом случае при вращении ручки одного потенциометра сервопривод будет поворачиваться на 90 градусов, а при дополнительном вращении другого — на вторые 90 градусов.

Рисунок 6

Более подробно изучить данную схему, а так же собрать ее, вы сможете купив Основной набор 1-ого уровня Эвольвектор .

2. Управление серводвигателем при помощи контроллера. Сгенерировать нужный сигнал ШИМ так же можно при помощи контроллера. Например можно использовать программируемый контроллер на платформе Ардуино. Чтобы максимально упростить программирование алгоритма управления серводвигателем (генерацию ШИМ) применяются заранее написанные программы, называемые библиотеками. Их сложный программный код скрыт от пользователя, предлагается только вызов нужных нам функций посредством коротких команд при подключении библиотеки к нашей основной программе. Все это делает сложное с алгоритмической точки зрения управление такими устройствами как серводвигатель крайне простым и удобным.

Схема подключения, а так же Скетч (программа) для управления серводвигателем контроллером Arduino показаны на рисунке 7.

Рисунок 7

ВНИМАНИЕ: Подключение питания серводвигателя к плате напрямую, как в нашем примере (рисунок 7), нежелательно. У нас на рисунке подключен один серводвигатель из категории «мини», потребляющий очень небольшие токи, отчего он вполне штатно работает, питаясь непосредственно от платы. Сервопривод стандартного размера требует большей мощности, что может привести к перегреву и повреждению контроллера. Подключение питания двигателей следует осуществлять только через отдельный источник, особенно если предполагается управление одновременно несколькими сервоприводами.

#include <Servo .h> - эта команда означает подключение библиотеки для управления сервоприводом. Эта библиотека присутствует на диске Эвольвектор, который поставляется совместно с нашими наборами 2-ого уровня. Так же её можно найти в интернете и положить в папку «libraries» вашей Arduino IDE.
Подключенная нами библиотека имеет большое количество команд, мы рассмотрим только те, который используются в программе.

Servo dvig ; - это объявление переменной специального типа. dvig - это переменная (название выбираем произвольно). Servo - это тип переменной (специальный тип, который задается в присоединенной библиотеке). Можно задать до 12 переменных этого типа, то есть для управления 12 серво-приводами. Иными словами, этой командой мы сообщили плате, что у нас есть сервопривод, который мы назвали dvig .
dvig.attach (9); - эта команда означает, что серво-привод (dvig ) присоединен к 9 пину (выводу).
dvig.write (90) ; - эта команда заставляет сервопривод (dvig ) повернуться в среднее положение (90 градусов).
dvig.write (0) ; - поворачивает сервопривод в положение 0 градусов.
dvig.write (180) ; - поворачивает сервопривод в положение 180 градусов.

Что означают остальные строки в программе вы можете найти на страницах нашего сайта или узнать из учебных пособий которые входят в состав